个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理
办公地点:西部校区化工实验楼A207
联系方式:13052731242
电子邮箱:zyb1104@dlut.edu.cn
Thioketal-crosslinked: ROS-degradable polycations for enhanced in vitro and in vivo gene delivery with self-diminished cytotoxicity
点击次数:
论文类型:期刊论文
发表时间:2019-09-01
发表刊物:JOURNAL OF BIOMATERIALS APPLICATIONS
收录刊物:SCIE、EI、PubMed
卷号:34
期号:3
页面范围:326-338
ISSN号:0885-3282
关键字:Transfection efficiency; cytotoxicity; trigger-responsive degradation; in vivo gene delivery; ROS-responsive PEI-based polymers
摘要:The irreversible correlation between the transfection efficiency and cytotoxicity of polycations has always been the huge obstacle that severely limited the gene delivery efficiency. The undesired inconsistency could be mainly attributed to the molecular weight (MW) of the polycations, that is, polymers with high MW and positive charge densities exhibited enhanced transfection efficiency but with associated cytotoxicity. To address such critical challenge, we developed the degradable high MW polymers strategy which could condense DNA for the internalization and release DNA upon the trigger-responsive degradation. In this work, two kinds of degradable PEI-based polymers were prepared via the polyaddition of PEI600 and dienes with ester groups or thiol ketal groups. The PEI-based degradable polymers could efficiently condense plasmid DNA to form the nano-complexes with the size around 180 nm. They also exhibited improved gene delivery efficiency compared with commercial available transfection reagent, PEI25k, and were 380-520 folds higher than PEI600 in HeLa cells. The toxicity of the polymers could be reduced by the rapid degradation upon acid or ROS triggering as well as intracellular release of DNA and the cell viability could reach higher than 80% even at high doses. ROS-responsive PEI-based polymers also demonstrated its potential applications especially in cancer cells, which were proved by the enhanced in vivo gene expression in cancer cells. Our strategy therefore allows an effective tool to manipulate the relationship between transfection efficiency and cytotoxicity of polycations, and thus provides an effective insight into the rational design of non-viral gene delivery vectors.
上一条:Ruthenium-Catalyzed Highly Regioselective Azide-Internal Thiocyanatoalkyne Cycloaddition under Mild Conditions: Experimental and Theoretical Studies
下一条:Poly(photosensitizer) Nanoparticles for Enhanced in Vivo Photodynamic Therapy by Interrupting the pi-pi Stacking and Extending Circulation Time