扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 王治宇 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/zywang/zh_CN/index.htm

  •   教授   博士生导师   硕士生导师
论文成果 当前位置: 王治宇 >> 科学研究 >> 论文成果
Freestanding Flexible Li2S Paper Electrode with High Mass and Capacity Loading for High-Energy Li-S Batteries

点击次数:
论文类型:期刊论文
发表时间:2017-09-06
发表刊物:ADVANCED ENERGY MATERIALS
收录刊物:Scopus、SCIE、EI
卷号:7
期号:17
ISSN号:1614-6832
关键字:freestanding flexible electrodes; high capacity; high mass loading; lithium-sulfur batteries; lithium sulfide
摘要:Lithium-sulfur (Li-S) batteries are a very appealing power source with extremely high energy density. But the use of a metallic-Li anode causes serious safety hazards, such as short-circuiting and explosion of the cells. Replacing a sulfur cathode with a fully-lithiated lithium sulfide (Li2S) to pair with metallic-Li-free high-capacity anodes paves a feasible way to address this issue. However, the practical utility of Li2S cathodes faces the challenges of poor conductivity, sluggish activation process, and high sensitivity to moisture and oxygen that make electrode production more difficult than dealing with sulfur cathodes. Here, an efficient but low-cost strategy for easy production of freestanding flexible Li2S-based paper electrodes with very high mass and capacity loading in terms of in situ carbonthermal reduction of Li2SO4 by electrospinning carbon is reported. This chemistry enables high loading but strong affinity of ultrafine Li2S nanoparticles in a freestanding conductive carbon-nanofiber network, meanwhile greatly reducing the manufacturing complexity and cost of Li2S cathodes. Benefiting from enhanced structural stability and reaction kinetics, the areal specific capacities of such cathodes can be significantly boosted with less sacrificing of high-rate and cycling capability. This unique Li2S-cathode design can be directly applied for constructing metallic-Li-free or flexible Li-S batteries with high-energy density.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学