唐春安

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:President of international exchange committee of the Chinese Society of Rock Mechanics and Engineering CSRME

其他任职:国际岩石力学与岩石工程学会(ISRM)中国国家小组副主席

性别:男

毕业院校:东北大学

学位:博士

所在单位:土木工程系

办公地点:综合实验四号楼330

联系方式:tca@mail.neu.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Modelling Rock Failure with a Novel Continuous to Discontinuous Method

点击次数:

论文类型:期刊论文

发表时间:2019-09-01

发表刊物:ROCK MECHANICS AND ROCK ENGINEERING

收录刊物:EI、SCIE

卷号:52

期号:9

页面范围:3183-3195

ISSN号:0723-2632

关键字:Rock failure; Whole-process analysis; Discontinuous deformation analysis; Numerical simulation

摘要:The original discontinuous deformation and displacement (DDD) method is greatly refined using the statistical damage theory and contact mechanics. Next, a novel coupled method is proposed to model the continuous to discontinuous failure process of rocks. By hybridizing the finite element method (FEM) and discontinuous deformation analysis (DDA) method, the proposed method inherits the advantages of both and is able to provide a complete and unified description of rock deformation, crack initiation and propagation, and rock body translation, rotation and interaction. Moreover, to improve the deformation results and refine the stress distribution within the model blocks, finite elements are introduced into the blocks. The ability of an intact block to fracture is included as well, i.e., the deformable blocks that contain several finite elements may split into smaller blocks if the strength criteria are satisfied continuously. The boundaries of damaged elements represent newly formed joints, and sliding and opening may occur along these joints, i.e., mechanical interaction is allowed between adjacent blocks. The correctness and validity of the proposed method are verified through a series of benchmark tests. The simulated results are consistent with the analytical solutions, previous studies and experimental observations. Overall, the coupled method is an effective and reliable approach for modelling the entire rock failure process with satisfactory accuracy and shows considerable potential in geotechnical engineering.