翁志焕

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 高分子材料教研室副主任,高分子材料系教工党支部副书记

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:高分子材料. 高分子化学与物理

办公地点:化工实验楼A402-2

联系方式:zweng@dlut.edu.cn

电子邮箱:zweng@dlut.edu.cn

扫描关注

论文成果

当前位置: 绿色高性能高分子材料 >> 科学研究 >> 论文成果

Self-curing triphenol A-based phthalonitrile resin precursor acts as a flexibilizer and curing agent for phthalonitrile resin

点击次数:

论文类型:期刊论文

发表时间:2018-01-01

发表刊物:RSC ADVANCES

收录刊物:SCIE

卷号:8

期号:57

页面范围:32899-32908

ISSN号:2046-2069

摘要:Major problems currently limiting the widespread application of phthalonitrile resins are the high precursor melting point and volatility of the curing agent. Herein, a novel self-curing triphenol A-based phthalonitrile resin precursor (TPPA-Ph) was successfully synthesized by reacting ,,-tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene (TPPA) with 4-nitrophthalonitrile (NPh) via nucleophilic substitution. The presence of residual phenolic hydroxyl groups in the TPPA-Ph precursor promoted the curing reaction of phthalonitrile resin in the absence of an additional curing reagent. Self-cured TPPA-Ph resins exhibited relatively low melting points (less than 100 degrees C), high thermal stability, and a wide processing window (116 degrees C). Furthermore, the TPPA-Ph precursors contained phenolic hydroxyl and cyano groups that can be used as flexibilizers and curing agents to optimize other phthalonitrile resins. Resorcinol-based phthalonitrile resin (DPPH) cured with various amounts of TPPA-Ph possessed excellent thermal and thermo-oxidative stability with a 5% weight loss temperature exceeding 530 degrees C, T(g)s above 380 degrees C, and a wide processing window and time. Therefore, as a novel precursor and curing agent for phthalonitrile resins, the triphenol A-based phthalonitrile resin is an ideal resin matrix for high-performance composites with broad application prospects in aerospace, shipping, machinery, and other high-tech fields.