徐金亭

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中国科学院沈阳自动化研究所

学位:博士

所在单位:机械工程学院

学科:车辆工程. 机械制造及其自动化

办公地点:综合实验2号楼423

电子邮箱:xujt@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Spiral Tool Path Generation Method on Mesh Surfaces Guided by Radial Curves

点击次数:

论文类型:期刊论文

发表时间:2018-07-01

发表刊物:JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME

收录刊物:SCIE

卷号:140

期号:7

ISSN号:1087-1357

关键字:CNC milling; mesh surface; radial curves; spiral tool paths

摘要:This paper presents a new spiral smoothing method to generate smooth curved tool paths directly on mesh surfaces. Spiral tool paths are preferable for computer numerical control (CNC) milling, especially for high-speed machining. At present, most spiral tool path generation methods aim mainly for pocketing, and a few methods for machining complex surface also suffer from some inherent problems, such as selection of projecting direction, preprocessing of complex offset contours, easily affected by the mesh or mesh deformation. To address the limitations, a new spiral tool path method is proposed, in which the radial curves play a key role as the guiding curves for spiral tool path generation. The radial curve is defined as one on the mesh surface that connects smoothly one point on the mesh surface and its boundary. To reduce the complexity of constructing the radial curves directly on the mesh surface, the mesh surface is first mapped onto a circular region. In this region, the radial lines, starting from the center, are planned and then mapped inversely onto the mesh surface, thereby forming the desired radial curves. By traversing these radial curves using the proposed linear interpolation method, a polyline spiral is generated, and then, the unfavorable overcuts and undercuts are identified and eliminated by supplementing additional spiral points. Spline-based technique of rounding the corners is also discussed to smooth the polyline spiral, thereby obtaining a smooth continuous spiral tool path. This method is able to not only greatly simplify the construction of radial curves and spiral tool path but also to have the ability of processing and smoothing complex surfaces. Experimental results are presented to validate the proposed method.