程春田

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水文学及水资源. 水利水电工程. 电力系统及其自动化. 计算机应用技术

联系方式:ctcheng@dlut.edu.cn

电子邮箱:ctcheng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于模糊聚类和BP神经网络的小水电短期发电能力预测方法

点击次数:

论文类型:期刊论文

发表时间:2014-11-25

发表刊物:水电能源科学

收录刊物:PKU、ISTIC

期号:11

页面范围:188-192

ISSN号:1000-7709

关键字:小水电;发电能力预测;模糊聚类;BP神经网络

摘要:小水电大多为无调节能力的径流式电站,汛期与大中型水电挤占输电通道,导致水电弃水及地区窝电现象日趋严重,因此尽可能准确地掌握小水电发电能力、制定合理的大小水电协调调度计划愈显重要。对此提出了基于模糊聚类和BP神经网络相结合的小水电短期发电能力FC-BP预测方法,将训练样本根据历史运行数据分类,建立相应的BP网络,对待测样本识别归类,预测小水电装机日利用小时数,并将该方法应用于云南省盈江县和云龙县小水电短期发电能力预测中。结果表明,FC-BP预测方法较传统ANN模型预测精度有所提高,且泛化能力更强。