程春田

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水文学及水资源. 水利水电工程. 电力系统及其自动化. 计算机应用技术

联系方式:ctcheng@dlut.edu.cn

电子邮箱:ctcheng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hydrologic uncertainty for Bayesian probabilistic forecasting model based on BP ANN

点击次数:

论文类型:会议论文

发表时间:2007-08-24

收录刊物:EI、CPCI-S、Scopus

卷号:1

页面范围:197-201

摘要:The Bayesian forecasting system (BFS) consists of three components which can be deal with independently. Considering the fact that the quantitative rainfall forecasting has not been fully developed in all catchment areas in China, the emphasis is given to the hydrologic uncertainty for Bayesian probabilistic forecasting. The procedure of determining the prior density, and likelihood functions associated with hydrologic uncertainty is very complicated and there is a requirement to assume a linear and normal distribution within the framework of BFS. These pose severe limitation to its practical application to real-life situations. In this paper, a new prior density, and likelihood junction model is developed with BP artificial neural network (ANN) to study the hydrologic uncertainty, of short-term reservoir stage forecasts based on the BFS framework. Markov chain Monte Carlo (MCMC) method is employed to solve the posterior distribution and statistics of reservoir stage. A case study is presented to investigate and illustrate these approaches using 3 hours rainfall-runoff data from the ShuangPai Reservoir in China. The results show that Bayesian probabilistic forecasting model based on BP ANN not only increases forecasting precision greatly but also offers more information for flood control, which makes it possible for decision makers consider the uncertainty of hydrologic forecasting during decision making and estimate risks of different decisions quantitatively.