程春田

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水文学及水资源. 水利水电工程. 电力系统及其自动化. 计算机应用技术

联系方式:ctcheng@dlut.edu.cn

电子邮箱:ctcheng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A modular parallelization framework for power flow transfer analysis of large-scale power systems

点击次数:

论文类型:期刊论文

发表时间:2018-07-01

发表刊物:JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY

收录刊物:SCIE、EI

卷号:6

期号:4

页面范围:679-690

ISSN号:2196-5625

关键字:Power flow transfer; Modular; Parallelization; Fork/Join framework; PSD-BPA

摘要:Power flow transfer (PFT) analysis under various anticipated faults in advance is important for securing power system operations. In China, PSD-BPA software is the most widely used tool for power system analysis, but its input/output interface is easily adapted for PFT analysis, which is also difficult due to its computationally intensity. To solve this issue, and achieve a fast and accurate PFT analysis, a modular parallelization framework is developed in this paper. Two major contributions are included. One is several integrated PFT analysis modules, including parameter initialization, fault setting, network integrity detection, reasonableness identification and result analysis. The other is a parallelization technique for enhancing computation efficiency using a Fork/Join framework. The proposed framework has been tested and validated by the IEEE 39 bus reference power system. Furthermore, it has been applied to a practical power network with 11052 buses and 12487 branches in the Yunnan Power Grid of China, providing decision support for large-scale power system analysis.