程春田

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水文学及水资源. 水利水电工程. 电力系统及其自动化. 计算机应用技术

联系方式:ctcheng@dlut.edu.cn

电子邮箱:ctcheng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

梯级水电站群优化调度多目标量子粒子群算法

点击次数:

论文类型:期刊论文

发表时间:2017-05-25

发表刊物:水力发电学报

收录刊物:CSCD、Scopus

卷号:36

期号:5

页面范围:47-57

ISSN号:1003-1243

关键字:梯级水电站群;优化调度;多目标优化;量子粒子群算法;混沌变异;外部档案集合

摘要:为科学求解梯级水电站群多目标优化调度模型,提出一种基于量子行为进化机制的多目标量子粒子群算法(MOQPSO).该方法以标准量子粒子群算法(QPSO)为基础,引入外部档案集合存储非劣粒子,利用个体支配关系实现档案集合的动态更新维护;依据个体领导能力优劣选择粒子历史最优位置与种群全局最优位置,维持搜索过程中个体进化方向的多样性;采用混沌变异算子对个体进行局部扰动,提升算法的全局收敛性能.乌江流域模拟调度结果表明,所提方法具有良好的收敛速度与寻优能力,可快速获得兼顾梯级水电系统经济性与可靠性要求的Pareto解集,能够为工程人员提供科学的决策依据.