程春田
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:水利工程系
学科:水文学及水资源. 水利水电工程. 电力系统及其自动化. 计算机应用技术
联系方式:ctcheng@dlut.edu.cn
电子邮箱:ctcheng@dlut.edu.cn
扫描关注
梯级水电站群优化调度多目标量子粒子群算法
点击次数:
论文类型:期刊论文
发表时间:2017-05-25
发表刊物:水力发电学报
收录刊物:CSCD、Scopus
卷号:36
期号:5
页面范围:47-57
ISSN号:1003-1243
关键字:梯级水电站群;优化调度;多目标优化;量子粒子群算法;混沌变异;外部档案集合
摘要:为科学求解梯级水电站群多目标优化调度模型,提出一种基于量子行为进化机制的多目标量子粒子群算法(MOQPSO).该方法以标准量子粒子群算法(QPSO)为基础,引入外部档案集合存储非劣粒子,利用个体支配关系实现档案集合的动态更新维护;依据个体领导能力优劣选择粒子历史最优位置与种群全局最优位置,维持搜索过程中个体进化方向的多样性;采用混沌变异算子对个体进行局部扰动,提升算法的全局收敛性能.乌江流域模拟调度结果表明,所提方法具有良好的收敛速度与寻优能力,可快速获得兼顾梯级水电系统经济性与可靠性要求的Pareto解集,能够为工程人员提供科学的决策依据.