location: Current position: Home >> Scientific Research >> Paper Publications

Rotordynamic Moment on the Backshroud of a Francis Turbine Runner Under Whirling Motion

Hits:

Indexed by:期刊论文

Date of Publication:2010-07-01

Journal:JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME

Included Journals:SCIE、EI、Scopus

Volume:132

Issue:7

Page Number:0711021-0711029

ISSN No.:0098-2202

Abstract:This paper addresses the rotordynamic instability of an overhung rotor caused by a hydrodynamic moment due to whirling motion through the structural coupling between whirl and precession modes. First, the possibility of instability is discussed based on a vibration model in which the hydrodynamic forces and moments are assumed to be smaller than structural forces with the structural coupling being represented by a structural influence factor. Then, the fundamental characteristics of rotordynamic moment on the backshroud of a Francis turbine runner under whirling motion were studied using model tests and numerical calculations. The runner is modeled by a disk positioned close to a casing with a small radial clearance at the outer periphery. The moment is caused by an inward leakage flow that is produced by an external pump in the model test. The experiments were designed to measure the rotordynamic fluid force moments under various leakage flow rates with various preswirl velocities and various axial clearances between the backshroud and casing. The computation was carried out based on a bulk flow model. It was found that the fluid force moment is generally destabilizing, except for a small region of positive whirling speed ratios. [DOI: 10.1115/1.4001802]

Pre One:水电站地面厂房结构的动力分析与设计优化

Next One:混凝土重力坝坝体裂缝摩擦系数影响研究