彭孝军

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Director, State Key laboratory of Fine Chemicals

其他任职:精细化工国家重点实验室主任、国务院学科评议组成员

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工. 化学生物学

办公地点:大连理工大学精细化工国家重点实验室
西部校区化工实验楼F-202#  
http://peng-group.dlut.edu.cn/

联系方式:大连理工大学精细化工国家重点实验室 西部校区化工实验楼F-202 辽宁省大连市高新区凌工路2号,大连116024 Tel: 0411-84986306; Fax: 0411-84986292;课题组网址:http://peng-group.dlut.edu.cn/

电子邮箱:pengxj@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Ion-Pair Selection Method for Pseudotargeted Metabolomics Based on SWATH MS Acquisition and Its Application in Differential Metabolite Discovery of Type 2 Diabetes

点击次数:

论文类型:期刊论文

发表时间:2018-10-02

发表刊物:ANALYTICAL CHEMISTRY

收录刊物:PubMed、SCIE

卷号:90

期号:19

页面范围:11401-11408

ISSN号:0003-2700

摘要:The pseudotargeted metabolomics method integrates advantages of nontargeted and targeted analysis because it can acquire data of metabolites in the multireaction monitoring (MRM) mode of mass spectrometry (MS) without needing standards. The key is the ion-pair information collection from samples to be analyzed. It is well-known that sequential windowed acquisition of all theoretical Fragment ion (SWATH) MS mode can acquire MS2 information to a maximum extent. To expediently acquire as many ion-pairs as possible with optimal collision energy (CE), an ion-pair selection approach based on SWATH MS acquisition with variable isolation windows was developed in this study. Initially, nontargeted acquisition of all metabolites information in plasma Standard Reference Material (SRM 1950) was performed by ultra high-performance liquid chromatography (UHPLC)-quadrupole time-of-flight (Q-TOF) MS platform with three CEs. With the help of software tool, the ion-pairs of unique metabolites were gained. Then they were validated in scheduled MRM coupled with UHPLC. After removing false positive, the ion-pairs with an optimal CE was integrated. A total of 1373 unique metabolite ion-pairs were obtained at positive ion mode. And repeatability of the established pseudotargeted approach was evaluated by intraday and interday precision. The results demonstrated the method was stable, reliable, and suitable for metabolomics study. As an application example, alterations of serum metabolites in Type 2 diabetes were investigated by using the established method. This work provides a pseudotargeted ion-pair selection method based on SWATH MS acquisition with the characters of increased metabolite coverage, suitable CE, and convenient processing.