彭孝军

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Director, State Key laboratory of Fine Chemicals

其他任职:精细化工国家重点实验室主任、国务院学科评议组成员

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工. 化学生物学

办公地点:大连理工大学精细化工国家重点实验室
西部校区化工实验楼F-202#  
http://peng-group.dlut.edu.cn/

联系方式:大连理工大学精细化工国家重点实验室 西部校区化工实验楼F-202 辽宁省大连市高新区凌工路2号,大连116024 Tel: 0411-84986306; Fax: 0411-84986292;课题组网址:http://peng-group.dlut.edu.cn/

电子邮箱:pengxj@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

d-PET-controlled "off-on" Polarity-sensitive Probes for Reporting Local Hydrophilicity within Lysosomes

点击次数:

论文类型:期刊论文

发表时间:2016-10-21

发表刊物:SCIENTIFIC REPORTS

收录刊物:SCIE、PubMed、Scopus

卷号:6

页面范围:35627

ISSN号:2045-2322

摘要:Polarity-sensitive fluorescent probes are powerful chemical tools for studying biomolecular structures and activities both in vitro and in vivo. However, the lack of "off-on" polarity-sensing probes has limited the accurate monitoring of biological processes that involve an increase in local hydrophilicity. Here, we design and synthesize a series of "off-on" polarity-sensitive fluorescent probes BP series consisting of the difluoroboron dippyomethene (BODIPY) fluorophore connected to a quaternary ammonium moiety via different carbon linkers. All these probes showed low fluorescence quantum yields in nonpolar solution but became highly fluorescent in polar media. BP-2, which contains a two-carbon linker and a trimethyl quaternary ammonium, displayed a fluorescence intensity and quantum yield that were both linearly correlated with solvent polarity. In addition, BP-2 exhibited high sensitivity and selectivity for polarity over other environmental factors and a variety of biologically relevant species. BP-2 can be synthesized readily via an unusual Mannich reaction followed by methylation. Using electrochemistry combined with theoretical calculations, we demonstrated that the "off-on" sensing behavior of BP-2 is primarily due to the polarity-dependent donor-excited photoinduced electron transfer (d-PET) effect. Live-cell imaging established that BP-2 enables the detection of local hydrophilicity within lysosomes under conditions of lysosomal dysfunction.