个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Director, State Key laboratory of Fine Chemicals
其他任职:精细化工国家重点实验室主任、国务院学科评议组成员
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:应用化学. 精细化工. 化学生物学
办公地点:大连理工大学精细化工国家重点实验室
西部校区化工实验楼F-202#
http://peng-group.dlut.edu.cn/
联系方式:大连理工大学精细化工国家重点实验室 西部校区化工实验楼F-202 辽宁省大连市高新区凌工路2号,大连116024 Tel: 0411-84986306; Fax: 0411-84986292;课题组网址:http://peng-group.dlut.edu.cn/
电子邮箱:pengxj@dlut.edu.cn
Metabolic Profiling with Gas Chromatography-Mass Spectrometry and Capillary Electrophoresis-Mass Spectrometry Reveals the Carbon-Nitrogen Status of Tobacco Leaves Across Different Planting Areas
点击次数:
论文类型:期刊论文
发表时间:2016-02-01
发表刊物:JOURNAL OF PROTEOME RESEARCH
收录刊物:SCIE、PubMed、Scopus
卷号:15
期号:2
页面范围:468-476
ISSN号:1535-3893
关键字:tobacco leaves; metabolic profiling; gas chromatography; mass spectrometry; capillary electrophoresis-mass spectrometry; carbon and nitrogen metabolism
摘要:The interaction between carbon (C) and nitrogen (N) metabolism can reflect plant growth status and environmental factors. Little is known regarding the connections between C N metabolism and growing regions under field conditions. To comprehensively investigate the relationship in mature tobacco leaves, we established metabolomics approaches based on gas chromatography-mass spectrometry (GC-MS) and capillary electrophoresis-time-of-flight-mass spectrometry (CE-TOF-MS). Approximately 240 polar metabolites were determined. Multivariate statistical analysis revealed that the growing region greatly influenced the metabolic profiles of tobacco leaves. A metabolic correlation network and related pathway maps were used to reveal the global overview of the alteration of C-N metabolism across three typical regions. In Yunnan, sugars and tricarboxylic acid (TCA) cycle intermediates were closely correlated with amino acid pools. Henan tobacco leaves showed positive correlation between the pentose phosphate pathway (PPP) intermediates and C-rich secondary metabolism. In Guizhou, the proline and asparagine had significant links with TCA cycle intermediates and urea cycle, and antioxidant accumulation was observed in response to drought. These results demonstrate that combined analytical approaches have great potential to detect polar metabolites and provide information on C-N metabolism related to planting regional characteristics.