彭孝军

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:中国化学会创始会士、常务理事,中国化工学会会士

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工. 化学生物学

办公地点:大连理工大学西部校区知顺楼F-202#  
http://peng-group.dlut.edu.cn/

联系方式:大连理工大学西部校区知顺楼F-202 辽宁省大连市高新区凌工路2号,大连116024 课题组网址:http://peng-group.dlut.edu.cn/ E-mail: pengxj@dlut.edu.cn

电子邮箱:pengxj@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion

点击次数:

论文类型:期刊论文

发表时间:2012-09-07

发表刊物:JOURNAL OF CHROMATOGRAPHY A

收录刊物:SCIE、EI、Scopus

卷号:1254

页面范围:8-13

ISSN号:0021-9673

关键字:Immobilized enzymatic reactor; Graphene oxide; Magnetic nanoparticles; Proteomics

摘要:In this paper, magnetic Fe3O4 nanoparticles modified graphene oxide nanocomposites (GO-CO-NH-Fe3O4) were prepared by covalent bonding, via the reaction between the amino groups of fuctionalized Fe3O4 and the carboxylic groups of GO, confirmed by Fourier-transform infrared spectra, Raman spectroscopy, and transmission electron microscopy. With GO-CO-NH-Fe3O4 as a novel substrate, trypsin was immobilized via pi-pi stacking and hydrogen bonding interaction, and the binding capacity of trypsin reached as high as 0.275 mg/mg. Since GO-CO-NH-Fe3O4 worked as not only support for enzyme immobilization, but also as an excellent microwave irradiation absorber, the digestion efficiency could be further improved with microwave assistance. By such an immobilized enzymatic reactor (IMER), standard proteins could be efficiently digested within 15 s, with sequence coverages comparable or better than those obtained by conventional in-solution digestion (12 h). Since trypsin was immobilized under mild conditions, the enzymatic activity of IMER preserved at least for a month. In addition, due to the good hydrophilicity of GO, no peptide residue was observed in the sequent digestion of bovine serum albumin and myoglobin. To further confirm the efficiency of such an IMER for proteome analysis, it was applied to digest proteins extracted from rat liver, followed by nanoRPLC-ESI-MS/MS analysis. With only 5 min microwave-assisted digestion, in 3 parallel runs, totally 456 protein groups were identified, comparable to that obtained by 12 h in-solution digestion, indicating the great potential of IMERs with GO-CO-NH-Fe3O4 as the support for high throughput proteome study. (c) 2012 Elsevier B.V. All rights reserved.