Hits:
Indexed by:期刊论文
Date of Publication:2018-02-06
Journal:Environmental science & technology
Included Journals:SCIE、EI、PubMed
Volume:52
Issue:3
Page Number:1444-1452
ISSN No.:1520-5851
Abstract:Forward osmosis (FO) is an emerging approach in water treatment, but its application is restricted by severe internal concentration polarization (ICP) and low flux. In this work, a self-sustained carbon nanotube hollow fiber scaffold supported polyamide thin film composite (CNT TFC-FO) membrane was first proposed with high porosity, good hydrophilicity and excellent electro-conductivity. It showed a specific structure parameter as low as 126 mum, suggesting its weakened ICP. Against a pure water feed using 2.0 M NaCl draw solution, its fluxes were 4.7 and 3.6 times as high as those of the commercial cellulose triacetate TFC-FO membrane in the FO and pressure retarded osmosis (PRO) modes, respectively. Meanwhile, the membrane showed excellent electrically assisted resistance to organic and microbial fouling. Its flux was improved by about 50% during oil-water simulation separation under 2.0 V voltage. These results indicate that the CNT TFC-FO membrane opens up a frontier for stably and effectively recycling potable water from electrochemical FO process.