王静云

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:生物工程学院

学科:生物化工. 生物工程与技术. 药物工程

办公地点:生物楼512

联系方式:wangjingyun67@dlut.edu.cn

电子邮箱:wangjingyun67@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Lipase entrapment in protamine-induced bio-zirconia particles: Characterization and application to the resolution of (R,S)-1-phenylethanol

点击次数:

论文类型:期刊论文

发表时间:2012-06-10

发表刊物:ENZYME AND MICROBIAL TECHNOLOGY

收录刊物:SCIE、EI、PubMed、Scopus

卷号:51

期号:1

页面范围:40-46

ISSN号:0141-0229

关键字:Zirconia-encapsulated lipase; Biomimetic mineralization; Kinetic resolution; (RS)-1-phenylethanol

摘要:Lipase from Burkholderia cepacia was encapsulated inside zirconia particles by biomimetic mineralization of K2ZrF6 induced with protamine, a natural cationic protein. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) were employed for the characterization of the novel immobilized lipase. SEM and TEM images showed that both the zirconia particles with and without lipase have good spherical structures with average particle sizes of 150 nm. Fluorescence microscopy demonstrated that the lipase was indeed encapsulated inside the zirconia particles. The maximum immobilization capacity of the zirconia particles was 0.15 units/mg under optimum immobilization conditions. Biochemical characterization showed that the encapsulated lipase could retain most of its initial activity. Compared with free lipase, the encapsulated lipase exhibited improved thermal, pH, and recycling stabilities. After 8 weeks of storage. no substantial loss in catalytic activity was observed for the encapsulated lipase. The conversion of the kinetic resolution of (R,S)-1-phenylethanol with vinyl acetate as acetyl donor catalyzed by zirconia-immobilized lipase reached 49.9% with higher ee(s) of 99.9% under the following optimal conditions: octane as solvent, 0.1 M (R,S)-1-phenylethanol, 70 mg immobilized lipase, 180 rpm, 50 degrees C for 48 h. After 6 cycles (288 h), the conversion and ees were still 43% and 85%, respectively. (C) 2012 Elsevier Inc. All rights reserved.