location: Current position: Home >> Scientific Research >> Paper Publications

Intramolecular Iron-Mediated C-H Bond Heterolysis with an Assist of Pendant Base in a [FeFe]-Hydrogenase Model

Hits:

Indexed by:期刊论文

Date of Publication:2014-12-03

Journal:JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Included Journals:SCIE、PubMed、Scopus

Volume:136

Issue:48

Page Number:16817-16823

ISSN No.:0002-7863

Abstract:Although many metalloenzymes containing iron play a prominent role in biological C-H activation processes, to date iron-mediated C(sp(3-)H heterolysis has not been reported for synthetic models of Fe/S-metalloenzymes. In contrast, ample precedent has established that nature's design for reversible hydrogen activation by the diiron hydrogenase ([FeFe]-H(2)ase) active site involves multiple irons, sulfur bridges, a redox switch, and a pendant amine base, in an intricate arrangement to perform H-H heterolytic cleavage. In response to whether this strategy might be extended to C-H activation, we report that a [FeFe]-H2ase model demonstrates iron-mediated intramolecular C-H heterolytic cleavage via an agostic C-H interaction, with proton removal by a nearby pendant amine, affording Fe-II-[ Fe'(II)-CH- S] three-membered-ring products, which can be reduced back to 1 by (CpCo)-Co-2 in the presence of HBF4. The function of the pendant base as a proton shuttle was confirmed by the crystal structures of the N-protonated intermediate and the final deprotonated product in comparison with that of a similar but pendant-amine-free complex that does not show evidence of C-H activation. The mechanism of the process was backed up by DFT calculations.

Pre One:A Molecular Copper Catalyst for Electrochemical Water Reduction with a Large Hydrogen-Generation Rate Constant in Aqueous Solution

Next One:Highly efficient molecular nickel catalysts for electrochemical hydrogen production from neutral water