Indexed by:会议论文
Date of Publication:2007-01-01
Included Journals:EI、CPCI-S、Scopus
Volume:24-25
Page Number:255-260
Key Words:silicon wafers; ductile mode grinding; median cracks; surface topography; maximum valley; grain depth of cut
Abstract:A new non-destructive method was developed to identify the grinding mode of silicon wafers, which is based on the information of subsurface cracks extracted from the surface topography of the ground silicon wafers measured with a 3D surface profiler. We examined extensive measurement data of the surface topography of silicon wafers processed by single grain grinding or real grinding operation, and our results show that the information about median cracks could be captured if the lateral sampling interval of the 3D surface profiler is small enough, even if the grain depth of cut is below 20nm. If the maximum valley of the measured surface topography is approximately equal to the grain depth of cut, surface formation will be under ductile mode, whereas, if the maximum valley is several times larger than the grain depth of cut, surface formation will be under brittle mode. According to this criterion, silicon wafers ground by ductile mode or brittle mode could be identified rapidly and conveniently. Experimental validation shows that this method is accurate.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Title : 国际磨粒技术学会(International Committee of Abrasive Technology, ICAT)委员,中国机械工程学会极端制造分会副主任、生产工程分会常务委员、微纳米制造技术分会常务委员,中国机械工程学会生产工程分会磨粒加工技术专业委员会副主任、切削加工专业委员会常委委员、精密工程与微纳技术专业委员会常委委员,中国机械工程学会特种加工分会超声加工技术委员会副主任,中国机械工程学会摩擦学分会微纳制造摩擦学专业委员会常务委员,中国机械工业金属切削刀具协会切削先进制造技术研究会常务理事、对外学术交流工作委员会副主任、切削先进制造技术研究会自动化加工技术与系统委员会副主任。
Gender:Male
Alma Mater:西北工业大学
Degree:Doctoral Degree
School/Department:机械工程学院
Discipline:Mechanical Manufacture and Automation. Mechatronic Engineering. Manufacturing Engineering of Aerospace Vehicle
Business Address:机械工程学院7191
Open time:..
The Last Update Time:..