个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
办公地点:材料馆332
联系方式:15641188312
电子邮箱:htma@dlut.edu.cn
The study of interficial reaction during rapidly solidified lead-free solder Sn3.5Ag0.7Cu/Cu laser soldering
点击次数:
论文类型:会议论文
发表时间:2014-08-12
收录刊物:EI、CPCI-S、Scopus
页面范围:949-952
关键字:laser soldering; rapidly-solidified Sn3.5Ag0.7Cu; IMCs; Aging
摘要:Interfacial intermetallic compound (IMC) is a necessary condition for the reliability of solder connection. In this study, the fiber lasers were used to solder rapidly-solidified lead-free solder Sn3.5Ag0.7Cu and Cu substrate, investigating the influence of laser soldering process parameters on the growth of IMC at the solid/liquid interface and finding the optimum parameters of laser soldering process. To simulate the IMC growth under actual service conditions, the solder joints under the condition p=50w, v=140mm/min were chosen to age at 150 degrees C. Scanning electron microscopy (SEM) and EDS were used to observe IMCs morphology and analyze the composition of IMCs. The results showed that when the laser power was 50w, the thickness of IMCs formed at the interface decreased with the increase of scanning speed. And the morphology of IMCs also changed with the scanning speed. In the aging process, the thickness of the IMCs increased with the aging time, and the morphology became relatively flat. In addition, the thickness of IMCs at the rapidly-solidified Sn3.5Ag0.7Cu/Cu, which was thicker before the aging process, was thinner than that at the as-cast Sn3.5Ag0.7Cu/Cu in the subsequent aging process. The distribution of Ag3Sn particles formed in the rapidly-solidified lead-free solders was more uniform, which suppressed the growth of Cu6Sn5 in the aging process better.