Hits:
Indexed by:期刊论文
Date of Publication:2009-09-30
Journal:NANOTECHNOLOGY
Included Journals:SCIE、EI、Scopus
Volume:20
Issue:39
ISSN No.:0957-4484
Abstract:This paper presents an assessment of continuum mechanics (beam and cylindrical shell) models in the prediction of critical buckling strains of axially loaded single-walled carbon nanotubes (SWCNTs). Molecular dynamics (MD) simulation results for SWCNTs with various aspect (length-to-diameter) ratios and diameters will be used as the reference solutions for this assessment exercise. From MD simulations, two distinct buckling modes are observed, i.e. the shell-type buckling mode, when the aspect ratios are small, and the beam-type mode, when the aspect ratios are large. For moderate aspect ratios, the SWCNTs buckle in a mixed beam-shell mode. Therefore one chooses either the beam or the shell model depending on the aspect ratio of the carbon nanotubes (CNTs). It will be shown herein that for SWCNTs with long aspect ratios, the local Euler beam results are comparable to MD simulation results carried out at room temperature. However, when the SWCNTs have moderate aspect ratios, it is necessary to use the more refined nonlocal beam theory or the Timoshenko beam model for a better prediction of the critical strain. For short SWCNTs with large diameters, the nonlocal shell model with the appropriate small length scale parameter can provide critical strains that are in good agreement with MD results. However, for short SWCNTs with small diameters, more work has to be done to refine the nonlocal cylindrical shell model for better prediction of critical strains.