论文名称:Rolling Bearing Reliability Assessment via Kernel Principal Component Analysis and Weibull Proportional Hazard Model 论文类型:期刊论文 发表刊物:SHOCK AND VIBRATION 收录刊物:SCIE、EI 卷号:2017 ISSN号:1070-9622 摘要:Reliability assessment is a critical consideration in equipment engineering project. Successful reliability assessment, which is dependent on selecting features that accurately reflect performance degradation as the inputs of the assessment model, allows for the proactive maintenance of equipment. In this paper, a novel method based on kernel principal component analysis (KPCA) and Weibull proportional hazards model (WPHM) is proposed to assess the reliability of rolling bearings. A high relative feature set is constructed by selecting the effective features through extracting the time domain, frequency domain, and time-frequency domain features over the bearing's life cycle data. The kernel principal components which can accurately reflect the performance degradation process are obtained by KPCA and then input as the covariates of WPHM to assess the reliability. An example was conducted to validate the proposed method. The differences in manufacturing, installation, and working conditions of the same type of bearings during reliability assessment are reduced after extracting relative features, which enhances the practicability and stability of the proposed method. 发表时间:2017-01-01