Main interests:

My main research interests are the foundation of quantum mechanics and their potential application in quantum information theory. I try to find out the better understanding and applications of the quantumness.  I have focused on the quantification of entanglement, quantum discord and coherence,  the re-understanding of the quantum uncertainty,  the experimental measurement of these quantumness, and their properties including the monogamy, the evolution under different environment, disentangling and so on. As to the appliciations, I have also  studied how quantum features induce the quantum advantage of quantum information processing task such as the the roles in nondemolition measurement, the quantum speed limit and the quantum speedup in some quantum algorithms etc..

In recent years,  I am interested in the quantum theory of the open quantum systems based on different physical systems such as quantum optical systems, superconducting systems etc. I mainly focus on the dynamical process and its description methods,  the quantum thermodynamics, the connection between quantum entanglement and some particular quantum optical phenomena.


Partial jobs are as follows.


95)Jun Zhang,Yan Han, and Chang-shui Yu

   Complementarity relations of measurement-induced average total coherence.

   Phys. Scr.

94) Shao-xiong Wu,  Chang-shui Yu

   Quantum speed limit for initial mixed state.

   Phys. Rev. A  98,  042132(2018).

93)Bao-qing Guo, Tong Liu, and Chang-shui Yu

  Quantum thermal transistor based on the qubit-qutrit coupling 

   Phys. Rev. E 98,  022118(2018).

92)Tong Liu, Bao-Qing Guo, Yang Zhang, and Chang-shui Yu

  One-step implementation of a multi-target-qubit controlled phase gate in a multi-resonator circuit QED 

  System. 

 Quant. Inf. Proc.17, 240(2018).

91)Sohaih Shah, Yang Zhang, G. Bari, Chang-shui Yu

    Tunable OMIT and Fano resonances in the optomechanical system with levitated nano-particle  

    IJTP 57(9):2814 (2018).

90)Yang Zhang, Tong Liu, Shao-xiong Wu, Chang-shui Yu

    Optical response mediated by a two level system in the hybrid Optomechanical system.

    Quant. Inf. Proc.17, 209(2018).

89)Jiasen Jin, and Chang-shui Yu

     Non-Markovianity in a collision model with environmental block

    New J. Phys. 20,053026(2018)

88)Li-qiang Zhang, Ting-ting Ma, Chang-shui Yu

    Measurement-induced non-locality in terms of the inverse approximate joint diagonalization .

   Phys. Rev. A 97,032112 (2018).

87)Tong Liu, Bao-qing Guo, Chang-shui Yu, Wei-Ning Zhang

    One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting. qubit in circuit QED and its applications.

   Opt. Exp. 26,4498 (2018).

86)Shaoxiong Wu, Yang Zhang, Chang-shui Yu

  Local quantum uncertainty guarantees the measurement precision for two coupled two-level systems in  

   non-Markovian environment.

   Annals of Phys.390 71 (2018).

85)Haiqing Zhao, Chang-shui Yu

   Remedying the strong monotonicity of the coherence measure in terms of the Tsallis relativity $\alpha$ entropy.azx

   Sci. Rep. 8, 299 (2018).

84)Si-ren Yang, Chang-shui Yu

  Operational resource theory of total coherence.

   Annal of Physics388, 305 (2018).

83)X. L. Zhao, Z. C. Shi, Chang-shui Yu, X. X. Yi, 

   Influence of localization transition on dynamical properties for an extended Aubry-Andre-Harper model

   J. Phys. B-Atom Mol. Opt. Phys. 50, 235503 (2017).

82)Zi-chen He, Xin-yun Huang, Chang-shui Yu

   Enabling the self-contained refrigerator to work beyond its limits by filtering the reservoirs.

    Phys. Rev. E 96, 052126 (2017).

81) Tong Liu, Chui-ping Yang, Yang Zhang, Chang-shui Yu,Wei-ning Zhang,

     Circuit QED: Cross-Kerr-effect induced by a superconducting qutrit without classical pulses.

     Quant. Inf. Proc. 16, 209 (2017).

80) X. L. Zhao, Z. C. Shi, Chang-shui Yu, X. X. Yi, 

      Effect of loss on the topological features of dimer chains described by the extended Aubry-Andre-

      Harper model.

     Phys. Rev. A 95, 02337 (2017).

79) Sohail Shah, Yang Zhang, Muhammad UsmanChang-shui Yu,

      Controllable optomechanically induced transparency in coupled optomechanical systems. 

    Euro. Phys. J. D 71,103 (2017).

78) Chang-shui Yu,

      Quantum coherence via skew information and its polygamy.   

    Phys. Rev. A 95, 042337 (2017).

77) Tong Liu, Chang-shui Yu,Wei-ning Zhang, 

     Deterministic transfer of an unknown qutrit state assisted by the low- Q microwave resonators

  Phys. Letts. A 381, 1727 (2017).

76) Jun Zhang, Si-ren Yang,Yang Zhang, Chang-shui Yu,

      The classical correlation limits the ability of measurement-induced average coherence.

      Sci. Rep. 7, 45598 (2017).

75) Jun Zhang, Yang Zhang, Chang-shui Yu,

    Stronger uncertainty relations with improvable upper and lower bounds.

  Quant. Inf. Proc. 16, 131 (2017).

74) Shao-xiong Wu, Chang-shui Yu,

     The Precision of Parameter estimation for dephasing model under squeezed reservoir.

    Int. J. Quant. Inf.56, 1198 (2017).

73) Yang Zhang, Sohail  Shah, Chang-shui Yu,

      Perfect photon absorption in hybrid atom-optomechanical system.

    Europhys. Lett.115, 64002 (2016).

72) Yang Zhang, Jun Zhang, Chang-shui Yu,

     Optimal photon blockade on the maximal atomic coherence.

  Int. J. Theor. Phys 55, 5239 (2016).

71) Chang-shui Yu, Ting-ting Shao, Dong-mo Li,

     Distribution of standard deviation of an observable among superposed states.

     Annals of Physics 373, 43 (2016).

70)Chang-shui Yu, Si-ren Yang and Bao-qing Guo,

     Total quantum coherence and its applications.

  Quant. Inf. Proc.15, 3773 (2016).

69) Sohail Shah, Yang Zhang, Jun Zhang, Chang-shui Yu,

     Optomechanically induced transparency in multi-cavity optomechanical system with and without one. two-level atom.

 Scientific Reports6, 28830 (2016).

68) Jun Zhang, Yang Zhang, Chang-shui Yu,

  The measurement-disturbance relation and the disturbance trade-off relation in terms of relative entropy. 

Int. J. Theor. Phys 55, 3949 (2016).

67) Yang Zhang, Jun Zhang, Chang-shui Yu,

  Photon statistics on the extreme entanglement.

  Scientific Reports 6, 24098 (2016).

66) Chang-shui Yu, Bao-qing Guo, Si-ren Yang,

   Measurable genuine tripartite entanglement of (2*2*n)- dimensional quantum states via only two-fold copies.

   Phys. Rev. A 93, 042304 (2016).

65) Shaoxiong Wu, Jun Zhang, Chang-shui Yu, He-shan Song,

     Weak measurements destroy too much quantum correlation.

    Int. J. Theor. Phys.55 (1), 62 (2016).

64) Yang Zhang,  Jun Zhang, Chang-shui Yu,

     Multistability in the coupled semiconductor microcavities.

      Int. J. Quant. Inf.13(7), 1550053 (2015).

63) Yang Zhang,  Jun Zhang, Chang-shui Yu,

  Center-of-mass motion induced photon blockade.

  Annals of Physics 361, 563(2015).

62) Jun Zhang, Yang Zhang, Chang-shui Yu,

Entropy uncertainty relation with multiple measurements in the presence of memory.

Scientific Reports 5,11701(2015).

61) Shao-xiong Wu, Chang-shui Yuand He-shan Song,

   Effects of the reservoir squeezing on the precision of parameter estimation.

   Phys. Lett. A379 (18-19), 1228(2015).

60)Yahong Wang, Chang-shui Yu,

   Minimum remote state preparation of an arbitrary two-level one-atom state via cavity QED.

   Int. J. Quant. Inf.13 (2), 1550009(2015).

59)Jun Zhang, Shaoxiong WuandChang-shui Yu, Xiaoguang Wang,

     Analytic Symmetric Information-theoretical Discord for One Class of Two-qubit States.

    Int. J. Quant. Inf.13 (1), 1550006(2015).

58) Jun Zhang, Yang Zhang, Chang-shui Yu,

Renyi entropy uncertainty relation for successive projective measurements.

Quant. Inf. Proc.14, 2239 (2015).

57) Lin Wang, Chang-shui Yu,

Heat current and quantum correlation subject to squeezing reservoirs.

 Int. J. Theor. Phys.54 (8),2942 (2015).

56) Shao-xiong Wu, Yang Zhang, Chang-shui Yuand He-shan Song,

 Initial-state dependence in quantum speed limit.

  J. Phys. A: Gen. Maths.48,045301 (2015).

55) Jun Zhang, Yang Zhang, Chang-shui Yu,

    The role ofquantum correlation in the quantum cloning.

    Euro. Phys. J. D 68, 365 (2014).

54) Chang-shui Yu, Qi-yao Zhu,

Re-examinaing the self-contained refrigerator in the strong coupling regime.

Phys.Rev.E90, 052142 (2014).

53)Jun Zhang, Shaoxiong Wu, Chang-shui Yu,

     Quantum correlation cost of the weak measurement.

    Annals of Physics.351, 104 (2014).

52)Chang-shui Yu, Shaoxiong Wu, Xiaoguang Wang, X. X. Yi and He-shan Song,

     Quantum correlation measure in arbitrary bipartite systems.

    Europhysics. Lett107, 10007 (2014).

51)Chang-shui Yu, Yang Zhang and Haiqing Zhao,

     Quantum correlation via coherence.

    Quant. Inf. Proc.13(6), 1437 (2014).

50) Shaoxiong Wu, Jun Zhang,  Chang-shui Yu, He-shan  Song,

     Measurement induced nonlocality based on skew information.

    Phys. Lett. A.378 (4), 344 (2014).

49) Lin Wang, Chang-shui Yu,

     The role of a quantum channel on a quantum state.

   Int. J. Theor. Phys.53 (2),715 (2014).

48)Chang-shui Yu, Bo Li and H. Fan,

    Sudden changes of quantum correlation.

Quant. Inf. & Comp14(5&6),0454 (2014).

47)Jun Zhang, Yang Zhang, Shaoxiong WuandChang-shui Yu,

     Non-classicalities via local disturbance of unitary operations.

    Euro. Phys. J. D. 67, 217 (2013).

46)Zhenni Li,Chang-shui Yu, Shuxue Ding, and Zunyi Tang,

     Nondestructive Probing Scheme of Quantum State without Quantum Correlation

    Int. J. Theo. Phys. 52, 3676 (2013).

45)Shao-xiong Wu, Jun Zhang, Chang-shui Yu, and He-shan Song,

     Quantum correlation can improve the distillation efficiency.

     Int. J. Quant. Inf.11, 1350029 (2013).

44)Jia-sen JinZhen-ni LiChang-shui Yu, and He-shan Song,

   Nondestructive detection of atomic Werner state with fiber-taper-coupled microsphere cavity.

   Physica A: Stat. Mech. its App.392, 2830 (2013).

43)Chang-shui Yu,  X. X. Yi, He-shan Song and Heng Fan,

     Entangling power in the deterministic quantum computation with one qubit.

    Phys. Rev. A 87, 022322 (2013).

42)Chang-shui Yu, Jia-sen Jin, Heng Fan and He-shan Song,

     Dual roles of quantum discord in the robust and non-demolition probing.

     Phys. Rev. A 87, 022113 (2013).

41)Chang-shui Yu,  Jun Zhang and Heng Fan,

     Quantum dissonance is rejected in a scheme of quantum overlap measurement.

  Phys. Rev. A 82, 052317 (2012).

40)Zhen-ni Li,Chang-shui Yu,

   Probing Bell Diagonal State without Disturbing its correlations.

Comm. in Theo. phys.58, 47 (2012). 

39) Shaoxiong WuChang-shui Yu,

     Localized quadripartite entanglement.

    Phys. Rev. A85, 032332 (2012).

38)Jia-sen JinChang-shui Yu, and He-shan Song,

     Measurable geometric quantum discord.

J. Phys. A: Gen. Maths.45,115308 (2012).

37)Chang-shui Yu, and Haiqing Zhao,

     Direct Measure of quantum correlation.

Phys. Rev. A 84, 062123  (2011).

36)Jia-sen Jin, Chang-shui Yu, and He-shan Song,

     Nondestructive identification of the Bell diagonal state. 

Phys. Rev. A83, 032109(2011).

35)Zhen-ni Li, Jia-sen Jin, Chang-shui Yu,

     Probing quantum entanglement, quantum discord, classical correlation, and the quantum state without    

     disturbing them.

    Phys. Rev. A83,012317(2011).

34)Jia-sen Jin, Chang-shui Yu, Pei Pei, and He-shan Song,

    Quantum nondemolition measurement of the Werner state.

Phys. Rev. A82, 042112(2010).

33)Jia-sen Jin, Chang-shui Yu, Pei Pei, and He-shan Song,

    Quantum discord induced by white noises.

J. Opt. Soc. Am. B-Opt. Phys.27(9), 1799(2010).

32)Kai-hua Ma, Chang-shui Yu, and He-shan Song,

    A tight bound on negativity of superpositions.

Eur. Phys. J. D 59(2), 317 (2010).

31)Jia-sen Jin, Chang-shui Yu, Pei Pei, and He-shan Song,

    Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution. 

Phys. Rev. A 81, 042309(2010).

30)Chang-shui Yu, Kai-hua Ma, He-shan Song,

Observable Estimation of Bipartite Mixed-state Entanglement.

Eur. Phys. J. D.56(3),431(2010). 

29Chang-shui Yu and He-shan Song,

Bipartite concurrence and localized coherence.

  Phys. Rev. A80,022324(2009).

28) Chang-shui Yu and He-shan Song,  

   Describing a quantum channel by state tomography of a single probe state.

 Europhysics Letters86(4), 40007 (2009).

27)  Jin JS, Yu CS, Song HS,

   Scheme for state-independent teleportation between two distant atoms.

   Int. J. Quant. Inf. 7(4),821(2009).

26) Chang-shui Yu and He-shan Song,

   Monogamy and entanglement in tripartite quantum states.

 Phys. Letts. A373(7), 727(2009).

25)  Chang-shui Yu, X. X. Yi, and He-shan Song,

     Evolution of entanglement for quantum mixed states. 

     Phys. Rev. A78, 062330 (2008).

24) Wang XG, YuCS, Yi XX,

   An alternative quantum fidelity for mixed states of qudits. 

   Phys. Letts. A373(1),58 (2008).

23) Chang-shui Yu, X. X. Yi and He-shan Song, 

Bounds on bipartitely shared entanglement reduced from superposed tripartite quantum states.

   Eur. Phys. J. D49, 273  (2008).

22) Chang-shui Yu, H. T. Cui and He-shan Song,

   Genuine tripartite entanglement and quantum phase transition. 

Chinese Physics17(8), 2795(2008).

21) Chang-shui Yu, X. X. Yi, He-shan Song and D. Mei, 

Preparation of a stable and maximally entangled state of two distant qutrits trapped in separate cavities. 

     Eur. Phys. J. D.48 (3), 411(2008).

20) Yahong Wang, He-shan Song and Chang-shui Yu,

 Faithful Controlled Teleportation of an Arbitrary Unknown Two-Atom State via Special W-States and QED Cavity. 

     Communication of Theoretical Physics,45(9): 1199(2008).  

19) Chang-shui Yu and He-shan Song,

Entanglement monogamy of tripartite quantum states.

     Phys. Rev. A77032329(2008).

18)Chang-shui Yu, L. Zhou and He-shan Song, 

Genuine tripartite entanglement monotone of (2X2Xn) -dimensional systems.

  Phys. Rev. A77,022313(2008).

17)Chang-shui Yu, C. Li and He-shan Song, 

Measurable concurrence of mixed states.

Phys. Rev. A77,012305(2008).

16)Chang-shui Yu and He-shan Song,

Measurable entanglement for tripartite quantum pure states.

Phys. Rev. A76,022324(2007).

15) Chang-shui Yu, He-shan Song and Ya-hong Wang, 

Genuine tripartite entanglement semi-monotone for (2 x 2 x n)-dimensional systems.

 Quantum information and computation, 7 (7), 584 (2007). 

14)Chang-shui Yu, Ya-hong Wang and He-shan Song, 

Teleportations of mixed states and multipartite quantum states, 

    Communications in Theoretical Physics,47(6),1041 (2007).

13)Chang-shui Yu, X. X. Yi, He-shan Song, et al, 

Robust preparation of Greenberger-Horne -Zeilinger and W states of three distant atoms. 

Phys. Rev. A75, 044301 (2007). 

12) Chang-shui Yuand He-shan Song,

 Full separability criterion for tripartite quantum systems.

    Eur.Phys.J.D.  42147 (2007). 

11)Chang-shui Yu, X. X. Yi and He-shan Song,

Concurrence of Superpositions.

Phys. Rev. A. 75, 022332(2007). 

10) WANG Ya-Hong, YU Chang-Shui, and SONG He-Shan, 

Teleportation of an Arbitrary Multipartite GHZ-Class State by One EPR Pair.

Chinese Physics Letters, 23 (12), 3142 (2006). 

9) CHEN Jing, YU Chang-Shui, and SONG He-Shan,

     Elementary Quantum Gates Based on Intrinsic Interaction Hamiltonian. 

  Communications in Theoretical Physics, 46(1),69 (2006). 

8) Chang-shui Yu and He-shan Song,

     Existence Criterion of Genuine Tripartite Entanglement. 

Phys. Rev. A 73, 032322 (2006).

7) Chang-shui Yu and He-shan Song,

Global Entanglement for Multipartite Quantum States. 

Phys. Rev. A 73,022325 (2006). 

6) Chang-shui Yu, He-shan Song and Ya-hong Wang,

 Remote Preparation of a Qudit Using Maximally Entangled States of Qubits. 

Phys. Rev. A 73, 022340 (2006). 

5) Chang-shui Yu and He-shan Song,

Separability criterion of Tripartite Qubit Systems.

 Phys. Rev. A 72, 022333 (2005). 

4) Chang-shui Yu and He-shan Song, 

Multipartite Entanglement Measure. 

Phys. Rev. A 71,042331 (2005).

3)Chang-shui Yu and He-shan Song,

Generalization of Concurrence Vectors. 

Phys. Letts. A 333, 364 (2004). 

2)Chang-shui Yuand He-shan Song,

 Free Entanglement Measure of Multiparticle systems.

Phys. Letts. A 330,377 (2004).

1) X. X. Yi, Chang-shui Yu, L. Zhou and He-shan Song,

Noise-assisted preparation of entangled atoms.

Phys. Rev. A,  68, 052304 (2003).        

  

Note:

      5)- 8)11), 13)16)-19)25), 29)

     were selected for the issues of Virtual Journal of Quantum Information.

16),17),29) were selected for the issue of Virtual Journal of Nanoscale Science & Technology.