个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:化学学院副院长
其他任职:辽宁省教学名师,宝钢优秀教师特等奖提名奖,中国分析测试学会青年学术委员会委员
性别:女
毕业院校:南京大学
学位:博士
所在单位:化学学院
学科:分析化学. 生物化学与分子生物学
办公地点:化工综合楼C305
电子邮箱:wushuo@dlut.edu.cn
Ultra-sensitive biosensor based on mesocellular silica foam for organophosphorous pesticide detection
点击次数:
论文类型:期刊论文
发表时间:2011-02-15
发表刊物:BIOSENSORS & BIOELECTRONICS
收录刊物:SCIE、EI、PubMed
卷号:26
期号:6
页面范围:2864-2869
ISSN号:0956-5663
关键字:Mesocellular silica foam; Solid phase extraction; Low limit of detection; Monocrotophos
摘要:A sensitive amperometric acetylcholinesterase (AChE) biosensor was fabricated based on mesocellular silica foam (MSF), which functioned as both an enzyme immobilization matrix and a solid phase extraction (SPE) material for the preconcentration of target molecules. The hydrophilic interface, the good mechanical/chemical stability, and the suitable pore dimension of MSF provided the entrapped AChE a good environment to well maintain its bioactivity at basic condition. The AChE immobilized in MSF showed improved catalytic ability for the hydrolysis of acetylthiocholine, as evidenced by the increasing of the oxidation current of thiocholine, the enzymatic catalytic hydrolysis production of acetylthiocholine. In addition, the MSF with large surface area showed a modest adsorption capacity for monocrotophos, a model organophosphate used in this study, via the hydrogen bond or physical adsorption interaction. The combination of the SPE and the good enzyme immobilization ability in MSF significantly promoted the sensitivity of the biosensor, and the limit of detection has lowered to 0.05 ng/mL The biosensor exhibited accuracy, good reproducibility, and acceptable stability when used for garlic samples analysis. The strategy may provide a new method to fabricate highly sensitive biosensors for the detection of ultra-trace organophosphorous pesticide infield. (C) 2010 Elsevier B.V. All rights reserved.