岳明

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:哈尔滨工业大学

学位:博士

所在单位:机械工程学院

学科:车辆工程. 控制理论与控制工程. 机械电子工程

办公地点:大连理工大学机械工程学院知方楼8017

电子邮箱:yueming@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Zero-dynamics-based adaptive sliding mode control for a wheeled inverted pendulum with parametric friction and uncertain dynamics compensation

点击次数:

论文类型:期刊论文

发表时间:2015-01-01

发表刊物:TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL

收录刊物:SCIE、EI

卷号:37

期号:1

页面范围:91-99

ISSN号:0142-3312

关键字:Wheeled inverted pendulum; parametric uncertainty; zero-dynamics; adaptive control

摘要:In this paper, we propose a novel control methodology based on zero-dynamics theory for a class of wheeled inverted pendulum (WIP) vehicles, which is efficient even in the presence of uncertain system frictions and dynamics parameters. The control schemes are elegantly constructed so that the WIP vehicle can successfully implement stabilizing of the posture (longitudinal and rotational movements), as well as hold the upright position of the vehicle body (tilt angle stability), only by the two control inputs with the aid of the design approach of zero-dynamics. In particular, the dynamics uncertainties, especially the friction effects, would deteriorate the control performance severely in practice. Therefore, we employ adaptive laws for the design parameters of zero-dynamics subsystem and uncertain coefficients of parametric frictions and dynamics. Consequently, the estimated frictions and dynamics are compensated through feedforward to obtain better control performance. To enhance the robustness of the system against parameter variations and external disturbances, sliding mode control techniques are applied to derive the specific algorithms, and then the closed-loop systems are proven to be globally asymptotically stable by Lyapunov techniques and LaSalle's invariance theorem. In addition, simulation studies have been performed to demonstrate the feasibility and effectiveness of the proposed strategies, which illuminate the promising practical application potentiality of the designed WIP vehicle control system.