高效伟

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 国家重大专项专家组成员、教育部热防护专业组组长、国际华人计算力学协会理事、中国航空学会理事、中国航空学会强度与设计专业委员会委员、国际边界单元法协会会员、教育部高等学校航空航天类专业教学指导委员会委员

性别:男

毕业院校:Glasgow University

学位:博士

所在单位:力学与航空航天学院

办公地点:海宇楼403A

联系方式:0411-84706332

电子邮箱:xwgao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Numerical modeling of turbulent heat transfer of a nanofluid at supercritical pressure

点击次数:

论文类型:期刊论文

发表时间:2017-02-25

发表刊物:APPLIED THERMAL ENGINEERING

收录刊物:SCIE、EI

卷号:113

页面范围:994-1003

ISSN号:1359-4311

关键字:Regenerative cooling; Thermophysical property; Methane; Heat transfer enhancement; Transcritical phenomenon

摘要:A numerical study has been conducted to examine the turbulent heat transfer of a nanofluid, methane-CuO, in a circular cooling tube at a supercritical pressure of 8 MPa, a phenomenon relevant to the rocket engine cooling application. Results reveal that at a surface heat flux of 3 MW/m(2) and an inlet flow velocity of 25 m/s, the addition of nanoparticles decreases the heat transfer rate, dictated by significant increase of the nanofluid viscosity, which leads to the decreased turbulent viscosity in the near-wall buffer zone. As the surface heat flux is increased to 7 MW/m(2) or the inlet velocity is decreased to 10 m/s, however, two physical phenomena of heat transfer improvement are observed in the nanofluid. The first phenomenon, which starts almost immediately from the beginning of the heated section, is controlled by strong increase of the nanofluid density, which results in the increased turbulent viscosity in the near wall buffer zone. The second phenomenon is dictated by thermophysical property variations in the near-wall turbulent flow region as fluid temperature transits from the subcritical to supercritical state (the transcritical process). Results indicate potential applications of nanofluids in enhancing heat transfer at supercritical pressures. (C) 2016 Elsevier Ltd. All rights reserved.