个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
办公地点:大连理工大学数学科学学院505
联系方式:0411-84708351-8205
电子邮箱:yangjiee@dlut.edu.cn
Interpretability for Neural Networks from the Perspective of Probability Density
点击次数:
论文类型:会议论文
发表时间:2019-01-01
收录刊物:EI、CPCI-S
页面范围:1502-1507
关键字:neural networks; interpretability; probability density; gaussian distribution
摘要:Currently, most of works about interpretation of neural networks are to visually explain the features learned by hidden layers. This paper explores the relationship between the input units and the output units of neural network from the perspective of probability density. For classification problems, it shows that the probability density function (PDF) of the output unit can be expressed as a mixture of three Gaussian density functions whose mean and variance are related to the information of the input units, under the assumption that the input units are independent of each other and obey a Gaussian distribution. The experimental results show that the theoretical distribution of the output unit is basically consistent with the actual distribution.