杨洁

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:大连理工大学数学科学学院505

联系方式:0411-84708351-8205

电子邮箱:yangjiee@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Interpretability for Neural Networks from the Perspective of Probability Density

点击次数:

论文类型:会议论文

发表时间:2019-01-01

收录刊物:EI、CPCI-S

页面范围:1502-1507

关键字:neural networks; interpretability; probability density; gaussian distribution

摘要:Currently, most of works about interpretation of neural networks are to visually explain the features learned by hidden layers. This paper explores the relationship between the input units and the output units of neural network from the perspective of probability density. For classification problems, it shows that the probability density function (PDF) of the output unit can be expressed as a mixture of three Gaussian density functions whose mean and variance are related to the information of the input units, under the assumption that the input units are independent of each other and obey a Gaussian distribution. The experimental results show that the theoretical distribution of the output unit is basically consistent with the actual distribution.