杨洁

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:大连理工大学创新园大厦B1405

联系方式:0411-84708351-8205

电子邮箱:yangjiee@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Binary Output Layer of Extreme Learning Machine for Solving Multi-class Classification Problems

点击次数:

论文类型:期刊论文

发表时间:2020-08-01

发表刊物:NEURAL PROCESSING LETTERS

收录刊物:SCIE

卷号:52

期号:1,SI

页面范围:153-167

ISSN号:1370-4621

关键字:Extreme learning machines (ELM); Multi-class classification problems; One-to-one approach; Binary approach; Accuracies

摘要:Considered in this paper is the design of output layer nodes of extreme learning machine (ELM) for solving multi-class classification problems with r (r >= 3) classes of samples. The common and conventional setting of output layer, called "one-to-one approach" in this paper, is as follows: The output layer contains r output nodes corresponding to the r classes. And for an input sample of the ith class (1 <= i <= r), the ideal output is 1 for the ith output node, and 0 for all the other output nodes. We propose in this paper a new "binar y approach": Suppose 2(q-1) < r <= 2(q) with q >= 2, then we let the output layer contain q output nodes, and let the ideal outputs for the r classes be designed in a binary manner. Numerical experiments carried out in this paper show that our binary approach does equally good job as, but uses less output nodes and hidden-output weights than, the traditional one-to-one approach.