Indexed by:Journal Papers
Date of Publication:2020-02-01
Journal:MOLECULAR CATALYSIS
Included Journals:EI、SCIE
Volume:482
ISSN No.:2468-8231
Key Words:CO2 conversion; Dialkyl carbonate; Kinetic; Thermodynamic; Density function theory
Abstract:The direct conversion of CO2 by alcohols has attracted wide attention as it offers a new green method of capturing CO2 with high selectivity. However, its biggest drawback is that its yield is extremely poor. In order to understand and address this issue, it is necessary to study the kinetic and thermodynamic processes of dialkyl carbonate formation, and develop effective catalysts for the rate-determining step. Here, we applied the density function theory to determine its molecular mechanism. The results showed that CO2 reacted with alcohols to first form monoalkyl carbonates, and then the monoalkyl carbonates further reacted with alcohols to generate dialkyl carbonates. In terms of kinetics, three alcohol molecules could directly activate CO2, and dialkyl carbonates formation was the rate-determining step, which conformed to the characteristics of an esterification reaction. In terms of thermodynamics, the formation of monoalkyl carbonates limited the conversion of the whole reaction. Pressuring CO2 and lowering the temperature contributed to its conversion. However, high temperature was conducive to increase the conversion of dialkyl carbonates. Ultimately, we proposed the suitable experimental conditions in which the temperature range was from 237 to 252 K and the CO2 pressure should be higher than 1 MPa.
Pre One:Micelle-template synthesis of a 3D porous FeNi alloy and nitrogen-codoped carbon material as a bifunctional oxygen electrocatalyst
Next One:Semi-Transparent and Stable Solar Cells for Building Integrated Photovoltaics: The Confinement Effects of the Polymer Gel Electrolyte inside Mesoporous Films
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:清华大学
Degree:Doctoral Degree
School/Department:化学学院
Discipline:Physical Chemistry (including Chemical Physics). Materials Physics and Chemistry. Inorganic Chemistry
Business Address:西部校区化工综合楼C313
Contact Information:0411-84986237
Open time:..
The Last Update Time:..