Indexed by:会议论文
Date of Publication:2017-01-01
Included Journals:CPCI-S
Page Number:219-224
Key Words:Crystal plasticity; Hot forming; 22MnB5; Dislocation density; Damage; Thermal activation
Abstract:Here in this paper, a multiscale framework based on crystal plasticity is proposed coupling with thermal activation mechanism, as well as the continuum damage mechanism. The microscopic hardening phenomenon is revealed by a dislocation density evolution model, which is constructed according to the temperature. The physical-based exponential function of shear strain rate is posed to describe the thermal material behavior replacing the general phenomenological power-law equation. A 3D spatial distribution of stress, strain and damage is presented in the finite element method, parameters of which are previously determined by a RVE calculation and fitting test compared to the experimental data. Finally, some discussions of stress heterogeneity and texture evolution are proposed and conclusions are made.
Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:School of Automotive Engineering
Discipline:Vehicle Engineering
Business Address:Room,A305,The Vehicle Experiment Center of SAE, DUT.
Contact Information:yingliang@dlut.edu.cn
办公邮箱 : yingliang@dlut.edu.cn
办公地点 : 汽车基础实验教学中心A305
Open time:..
The Last Update Time:..