Liang Ying
Personal Homepage
Paper Publications
Investigation of convection heat transfer coefficient of circular cross-section short pipes in hot stamping dies
Hits:

Indexed by:期刊论文

Date of Publication:2018-06-25

Journal:APPLIED THERMAL ENGINEERING

Included Journals:SCIE、EI

Volume:138

Page Number:133-153

ISSN No.:1359-4311

Key Words:Hot stamping; Short pipe flow model; CHTC; Calculating methods; Influencing factors; Threaded pipe

Abstract:Since the cooling system design in hot stamping dies is an important issue in hot stamping technology, the heat transfer characteristics between water flow and the inner wall of pipes becomes particularly important for its remarkable effect on hot stamping process. In order to investigate the heat transfer characteristics between H13 tool steel and the water flow in hot stamping dies, a self-developed Convection Heat Transfer Coefficient (CHTC) measuring equipment was established based on a circular cross-section short pipe model. To calculate the CHTC, an analytical calculating method named Fourier equation method based on experimental data and a numerical simulation method were introduced. To further investigate the influence of different factors including inlet fluid mass flow rate, inlet fluid temperature, inlet fluid turbulence intensity, pipe diameter, surface roughness and the furnace temperature on the CHTC, more numerical simulations were implemented, together with the ANOVA analysis. And results showed that the obtained simulation temperature field was in good agreement with the experiment, and the calculated CHTC values distilled from the simulation results were matched well with that of experiment, too. Moreover, all the investigated factors were found to have significant influence on the CHTC value, and the top three factors are inlet fluid mass flow rate, inlet fluid temperature and inner pipe surface roughness. Finally, a novel threaded pipe applied in hot stamping die was introduced derived from the ideal of improving inner pipe surface roughness, which was found to have much higher CHTC, the turbulence intensity along the cooling pipe could be promoted, which could help increase the heat transfer intensity as well.

Teacher image
  • 1
  • 2
  • 3
Personal information

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Gender:Male

Alma Mater:Dalian University of Technology

Degree:Doctoral Degree

School/Department:School of Automotive Engineering

Discipline:Vehicle Engineering

Business Address:Room,A305,The Vehicle Experiment Center of SAE, DUT.

Contact Information:yingliang@dlut.edu.cn

办公邮箱 : yingliang@dlut.edu.cn

办公地点 : 汽车基础实验教学中心A305

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version