Indexed by:期刊论文
Date of Publication:2018-07-01
Journal:INTERNATIONAL JOURNAL OF MATERIAL FORMING
Included Journals:SCIE、Scopus
Volume:11
Issue:4
Page Number:527-539
ISSN No.:1960-6206
Key Words:GTN damage model; Shear modification; Stress triaxiality; Sheet metal forming; Numerical simulation
Abstract:Gurson-type models have been widely used to predict failure during sheet metal forming process. However, a significant limitation of the original GTN model is that it is unable to capture fracture under relatively low stress triaxiality. This paper focused on the fracture prediction under this circumstance, which means shear-dominated stress state. Recently, a phenomenological modification to the Gurson model that incorporates damage accumulation under shearing has been proposed by Nahshon and Hutchinson. We further calibrated new parameters based on this model in 22MnB5 tensile process and developed the corresponding numerical implementation method. Lower stress triaxiality were realized by new-designed specimens. Subsequently, the related shear parameters were calibrated by means of reverse finite element method and the influences of new introduced parameters were also discussed. Finally, this shear modified model was utilized to model the small punch test (SPT) on 22MnB5 high strength steel. It is shown that the shear modification of GTN model is able to predict failure of sheet metal forming under wide range of stress state.
Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:School of Automotive Engineering
Discipline:Vehicle Engineering
Business Address:Room,A305,The Vehicle Experiment Center of SAE, DUT.
Contact Information:yingliang@dlut.edu.cn
办公邮箱 : yingliang@dlut.edu.cn
办公地点 : 汽车基础实验教学中心A305
Open time:..
The Last Update Time:..