Indexed by:Journal Papers
Date of Publication:2019-05-01
Journal:COMPOSITE STRUCTURES
Included Journals:SCIE、EI
Volume:215
Page Number:258-265
ISSN No.:0263-8223
Key Words:Crush resistance; Energy absorption; Adhesive bonding; Crack propagation; Failure mechanism
Abstract:Thin-walled beams are widely adopted as the key frontal energy absorption component in automotive body. This work focused on the numerical modelling of a CFRP hat-shaped thin-walled beam under axial-crushing load, which was well validated against testing data as well as experimentally observed fracture behaviour. CFRP hat beam was manufactured with prepreg IM7/8552 through hot-press moulding, and then bonded with a base plate using structural adhesive. The adhesively bonded CFRP beam was loaded under axial crushing to investigate the fracture behaviour in CFRP as well as adhesive layer. The crushing process of CFRP beam was numerically modelled, where the strength-based Chang-Chang failure criterion was adopted to determine the fracture property of CFRP, while Tiebreak was attached in the adhesive and matrix to simulate the interfacial and interlaminar failure. Experimental work revealed that obvious interlaminar failure was observed in CFRP beam, with the outer layers curving outward and inner layers bending inward. Numerical modelling showed good agreement with the experimental data in the aspects of initial peak load and energy absorption. Based on the developed modelling technique, the fracture behaviour in CFRP beam as well as the interfacial failure in adhesive layer and composite matrix can be well predicted and evaluated.
Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:School of Automotive Engineering
Discipline:Vehicle Engineering
Business Address:Room,A305,The Vehicle Experiment Center of SAE, DUT.
Contact Information:yingliang@dlut.edu.cn
办公邮箱 : yingliang@dlut.edu.cn
办公地点 : 汽车基础实验教学中心A305
Open time:..
The Last Update Time:..