尹宝才

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

电子邮箱:ybc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Unsupervised Learning of Human Pose Distance Metric via Sparsity Locality Preserving Projections

点击次数:

论文类型:期刊论文

发表时间:2019-02-01

发表刊物:IEEE TRANSACTIONS ON MULTIMEDIA

收录刊物:SCIE、Scopus

卷号:21

期号:2

页面范围:314-327

ISSN号:1520-9210

关键字:Pose similarity; distance metric; unsupervised learning; sparse representation; locality preserving projection

摘要:Human poses admit complicated articulations and multigranular similarity. Previous works on learning human pose metric utilize sparse models, which concentrate large weights on highly similar poses and fail to depict an overall structure of poses with multigranular similarity. Moreover, previous works require a large number of similar/dissimilar annotated pairwise poses, which is an tedious task and remains inaccurate due to different subjective judgments of experts. Motivated by graph-based neighbor assignment techniques, we propose an unsupervised model called sparsity locality preserving projection with adaptive neighbors (SLPPAN), for learning human pose distance metric. By using a property of the graph Laplacian, SLPPAN introduces a fixed-rank constraint to enforce an adaptive graph structure of poses and learns the neighbor assignment, the similarity measurement, and pose metric simultaneously. Experiments on pose retrieval of the CMU Mocap database demonstrate that SLPPAN outperforms traditional pose metric learning methods by capturing viewpoint variations of human poses. Experiments on keyframe extraction of the MSRAction3D database demonstrate that SLPPAN outperforms current methods by precisely detecting important frames of action sequences.