个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
电子邮箱:ybc@dlut.edu.cn
Locality Preserving Projection Based on F-norm
点击次数:
论文类型:会议论文
发表时间:2018-01-01
收录刊物:CPCI-S
页面范围:1330-1337
摘要:Locality preserving projection (LPP) is a well-known method for dimensionality reduction in which the neighborhood graph structure of data is preserved. Traditional LPP employ squared F-norm for distance measurement. This may exaggerate more distance errors, and result in a model being sensitive to outliers. In order to deal with this issue, we propose two novel F-norm-based models, termed as F-LPP and F-2DLPP, which are developed for vector-based and matrix-based data, respectively. In F-LPP and F-2DLPP, the distance of data projected to a low dimensional space is measured by F-norm. Thus it is anticipated that both methods can reduce the influence of outliers. To solve the F-norm-based models, we propose an iterative optimization algorithm, and give the convergence analysis of algorithm. The experimental results on three public databases have demonstrated the effectiveness of our proposed methods.