![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
电子邮箱:ybc@dlut.edu.cn
Product Grassmann Manifold Representation and Its LRR Models
点击次数:
论文类型:会议论文
发表时间:2016-01-01
收录刊物:CPCI-S、EI
页面范围:2122-2129
摘要:It is a challenging problem to cluster multi-and high-dimensional data with complex intrinsic properties and nonlinear manifold structure. The recently proposed subspace clustering method, Low Rank Representation (LRR), shows attractive performance on data clustering, but it generally does with data in Euclidean spaces. In this paper, we intend to cluster complex high dimensional data with multiple varying factors. We propose a novel representation, namely Product Grassmann Manifold (PGM), to represent these data. Additionally, we discuss the geometry metric of the manifold and expand the conventional LRR model in Euclidean space onto PGM and thus construct a new LRR model. Several clustering experimental results show that the proposed method obtains superior accuracy compared with the clustering methods on manifolds or conventional Euclidean spaces.