Indexed by:期刊论文
Date of Publication:2021-01-10
Journal:JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING
Volume:12
Issue:5
Page Number:1014-1026
ISSN No.:1674-7755
Key Words:Microcrack initiation (CI); Microcrack damage (CD); Microcrack fracturing; Acoustic emission; Coal properties
Abstract:Coal pillars are usually loaded under combined compression-shear stresses at underground coal mines. Their long-term stability is critical to the utilization of underground structures, such as underground reservoirs at coal mines. In this study, a modified rock property testing system was used to explore the mechanical properties of coal specimens under quasi-static combined compression-shear loading conditions. The acoustic emission technique was applied to investigating the microcrack fracturing of coal specimens at various inclination angles. The experimental results show that specimen inclination has remarkable effects on the microcrack initiation, microcrack damage and ultimate failure of the coal specimen. The failure mode of the coal specimen tends to transit from axial splitting to shear failure with increasing specimen inclination, and its peak strength is closely associated with the microcrack damage threshold. In practice, it is recommended to consider coal strength under combined compression-shear loading when using empirical pillar strength formulae so that the effect of pillar inclination can be included. (C) 2020 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V.
Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Main positions:Vice-director of the Deep Underground Engineering Research Center
Gender:Male
Alma Mater:University of New South Wales, Sydney, Australia
Degree:Doctoral Degree
School/Department:School of Civil Engineering
Discipline:Geotechnical Engineering
Business Address:土木工程学院综合四号楼 335室
Contact Information:13478612856
Open time:..
The Last Update Time:..