柳丽芬

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:盘锦校区食品与环境学院副院长 Vice Dean School of Food and Environment Panjin Campus Dalian University of Technology

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工海洋与生命学院

学科:环境工程. 环境科学

办公地点:环境学院 B 505

化工 海洋与生命学院  D05-201

联系方式:0427-2631799;

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

PPy/AQS (9, 10-anthraquinone-2-sulfonic acid) and PPy/ARS (Alizarin Red's) modified stainless steel mesh as cathode membrane in an integrated MBR/MFC system

点击次数:

论文类型:期刊论文

发表时间:2014-09-15

发表刊物:DESALINATION

收录刊物:SCIE、EI、Scopus

卷号:349

页面范围:94-101

ISSN号:0011-9164

关键字:Stainless steel mesh; Cathode membrane modification; Wastewater treatment; MBR/MFC

摘要:TO increase effluent quality and membrane flux, membrane bioreactor was integrated with microbial fuel cell (MBR/MFC), in which functional cathode membranes could enable fouling reduction and even electro-catalytic pollutant degradation using the bin-generated electricity. Modifying stainless steel mesh (SSM) with only polypyrrole (PPy) or cheap ARS (Alizarin Red's) or expensive AQS (9,10-anthraquinone-2-sulfonic acid) doped PPy film, helped obtain high ORR (oxygen reduction reaction) activity and higher power output in the integrated MBR/MFC system. The ARS and PPy modified cathode membranes, could not only increase the degradation of (MB) methylene blue (>90%, 1 h), but also enable higher antifouling property infiltrations. Most importantly, replacing the blank SSM, the use of PPy/AQS, PPy/ARS and PPy modified SSM, increased power density 31.37, 27.06 and 23.7 times respectively in the integrated MBR/MFC system. The new system has great application potential and economic feasibility in effective removal of COD and NH4+-N nutrients, has better effluent qualities and has higher energy recovery. (C) 2014 Elsevier B.V. All rights reserved.