个人信息Personal Information
副教授
硕士生导师
性别:女
毕业院校:北京大学
学位:博士
所在单位:集成电路学院
学科:微电子学与固体电子学
办公地点:大连理工大学开发区校区信息楼211-1
电子邮箱:hqzhang@dlut.edu.cn
High density Si/ZnO core/shell nanowire arrays for photoelectrochemical water splitting
点击次数:
论文类型:期刊论文
发表时间:2013-09-01
发表刊物:JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
收录刊物:SCIE、EI、Scopus
卷号:24
期号:9
页面范围:3474-3480
ISSN号:0957-4522
摘要:Si/ZnO core/shell nanowire (NW) arrays were fabricated using atomic layer deposition of ZnO shell on n-Si NW arrays prepared by metal assisted electroless etching method. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction were utilized to characterize the core/shell structures. Water splitting performance of the core/shell structures was preliminarily studied. The Si/ZnO core/shell NW arrays yielded significantly higher photocurrent density than the planar Si/ZnO structure due to their low reflectance and high surface area. The photoelectrochemical efficiency was found to be 0.035 and 0.002 % for 10 mu m-long Si/ZnO NW array and planar Si/ZnO sample, respectively. These results suggested that core/shell structure is superior to planar heterojunction for PEC electrode design. We demonstrated the dependence of photocurrent density on the length of the core/shell array, and analyzed the reasons why longer NW arrays could produce higher photocurrent density. The relationship between the thickness of ZnO shell and the photoconversion efficiency of Si/ZnO NW arrays was also discussed. By applying the core/shell structure in electrode design, one may be able to improve the photoelectrochemical efficiency and photovoltaic device performance.