AUVfU5RnUOjmMW5YH9u75Aplfhkw50xhxWuY3KV2efXupeKv1XHWrQbK0Rhj
  • 其他栏目

    戚金清

    • 副教授     硕士生导师
    • 性别:男
    • 毕业院校:东京工业大学
    • 学位:博士
    • 所在单位:信息与通信工程学院
    • 学科:通信与信息系统. 信号与信息处理
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    Saliency detection via joint modeling global shape and local consistency

    点击次数:

      发布时间:2019-03-12

      论文类型:期刊论文

      发表时间:2017-01-26

      发表刊物:NEUROCOMPUTING

      收录刊物:Scopus、EI、SCIE

      卷号:222

      页面范围:81-90

      ISSN号:0925-2312

      关键字:Saliency detection; Joint modeling; Object shape; Local consistency

      摘要:Saliency detection is the task of locating informative regions in an image, which is a challenging task in computer vision. In contrast to the existing saliency detection models that focus on either local or global image property, an effective salient object detection method is introduced based on joint modeling global shape and local consistency. To this end, Restricted Boltzmann Machine (RBM) is utilized to model salient object shape as global image property and Conditional Random Field (CRF), on the other hand, is adopted to achieve its local consistency. In order to obtain the final saliency map, a universal framework is introduced to combine the results of RBM and CRF. Experimental results on five benchmark datasets demonstrate that the proposed saliency detection method performs favorably against the existing state-of-the-art algorithms.