教授 博士生导师 硕士生导师
主要任职: 材料科学与工程学院副院长
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 材料科学与工程学院
学科: 材料学
电子邮箱: zhaoning@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 会议论文
发表时间: 2013-08-11
收录刊物: EI、CPCI-S、Scopus
页面范围: 1094-+
关键字: Sn-3Ag-0.5Cu solder joint; board-level drop reliability; failure mode; wafer-level chip-scale packaging (WLCSP); intermetallic compound (IMC)
摘要: The present work evaluated the board level reliability of a kind of wafer-level chip-scale packaging (WLCSP). Drop impact tests were conducted to evaluate the lifetime and failure mode of the components before and after thermal cycles from -55 to 125 degrees C (50, 100, 150 temperature cycles) and high temperature (125 degrees C) storage (50 h, 100 h, 150 h). Under the peak acceleration of 1500 g and pulse duration of 0.5 ms, no failures were found in all of the components experienced thermal treatments after 300 drops. For the components without thermal treatments, cracks generated after 5000 drops under the shock condition with the peak acceleration of 2900 g and the pulse duration of 0.3 ms. Three kinds of failure modes were observed. The first was resin crack that generated between Cu pad and PCB; the second was internal cracks in the solder joints which generated near the IMC layer on the component side; and the third one was fracture of the Cu pad near the component. Among the above three failure modes, resin cracks most likely occurred during drop tests. The solder joints in the first row that closed to the center of PCB were checked after drop tests. Resin cracks were generally emerged at the two corners of the components. The internal cracks of solder joints tended to occur in the third solder joints, due to the resin cracks in the first and second joints released the impact energy. The cracks in Redistribution Layer (RDL) and fracture of Cu pad near the component least happened and always coexisted with the other two kinds of cracks. From the perspective of locations of components, cracks more easily generated in the components near the edge of PCB.