![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:材料科学与工程学院副院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:材料科学与工程学院
学科:材料学
办公地点:知远楼B515(新材料大楼)
电子邮箱:zhaoning@dlut.edu.cn
Migration behavior of indium atoms in Cu/Sn-52In/Cu interconnects during electromigration
点击次数:
论文类型:期刊论文
发表时间:2015-11-13
发表刊物:JOURNAL OF MATERIALS RESEARCH
收录刊物:SCIE、EI、Scopus
卷号:30
期号:21
页面范围:3316-3323
ISSN号:0884-2914
摘要:The interfacial reactions in Cu/Sn-52In/Cu interconnects during solid-solid (S-S) and liquid-solid (L-S) electromigration (EM) under a current density of 2.0 x 10(4) A/cm(2) at 90 and 150 degrees C have been in situ studied using synchrotron radiation real-time imaging technology. The In atoms directionally migrate toward the cathode due to the back-stress induced by the preferential migration of the Sn atoms over the In atoms toward the anode during the S-S EM, resulting in the segregation of the Sn and In atoms at the anode and cathode, respectively. During the L-S EM, however, the In atoms directionally migrate toward the anode due to the negative effective charge number (Z*) of In rather than the back-stress. The polarity effect, i.e., the intermetallic compounds growing continuously at the anode while becoming thinner at the cathode, is more significant during the L-S EM than the S-S EM. Furthermore, the consumption rate of the cathode Cu during the L-S EM is three orders of magnitude higher than that in the case of the S-S EM because of the significantly higher EM-induced atomic flux in the liquid solder. The migrations of the Sn, In, and Cu atoms are discussed in terms of diffusion flux.