• 更多栏目

    吕军

    • 教授     博士生导师   硕士生导师
    • 任职 : 党委委员,航空航天系主任,院长助理
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:飞行器设计. 计算力学
    • 办公地点:大连理工大学综合实验楼1号楼410A
    • 联系方式:办公室:0411-84706915 手机号:13591733151
    • 电子邮箱:lvjun@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Numerical Integration Approach Based on Radial Integration Method for General 3D Polyhedral Finite Elements

    点击次数:

    论文类型:期刊论文

    发表时间:2015-10-01

    发表刊物:INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS

    收录刊物:SCIE、EI

    卷号:12

    期号:5

    ISSN号:0219-8762

    关键字:Polyhedral finite element method; irregular polyhedrons; radial integral method; numerical integrations

    摘要:We construct an efficient quadrature method for the integration of the Galerkin weak form over general 3D polyhedral elements based on the radial integration method ( RIM). The basic idea of the proposed method is to convert the polyhedral domain integrals to contour plane integrals of the element by utilizing the RIM which can be used for accurate evaluation of various complicated domain integrals. The quadrature construction scheme for irregular polyhedral elements involves the treatment of the nonpolynomial shape functions as well as the arbitrary geometry shape of the elements. In this approach, the volume integrals for polyhedral elements with triangular or quadrilateral faces are evaluated by transforming them into face integrals using RIM. For those polyhedral elements with irregular polygons, RIM is again used to convert the face integrals into line integrals. As a result, the volume integration of Galerkin weak form over the polyhedral elements can be easily carried out by a number of line integrals along the edges of the polyhedron. Some benchmark numerical examples including the patch tests are utilized to demonstrate the accuracy and convenience of the proposed method.