• 更多栏目

    吕军

    • 教授     博士生导师   硕士生导师
    • 任职 : 党委委员,航空航天系主任,院长助理
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:飞行器设计. 计算力学
    • 办公地点:大连理工大学综合实验楼1号楼410A
    • 联系方式:办公室:0411-84706915 手机号:13591733151
    • 电子邮箱:lvjun@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    A new multiscale computational method for electromechanically coupled analysis of heterogeneous piezoelectric composites

    点击次数:

    论文类型:期刊论文

    发表时间:2015-03-01

    发表刊物:JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES

    收录刊物:SCIE、EI、Scopus

    卷号:26

    期号:4

    页面范围:434-449

    ISSN号:1045-389X

    关键字:Piezoelectric; multiscale analysis; electromechanical coupling; extended multiscale finite element method; oversampling technique

    摘要:This article is concerned with the electromechanically coupled multiscale behaviors of the heterogeneous piezoelectric materials, which consist of periodic or non-periodic distributed microstructures. A multiscale framework based on the extended multiscale finite element method is developed to capture the large-scale solutions on the coarse-scale mesh without resolving the entire small-scale features. In this method, the microscale fluctuations in the mechanical displacement and electrical potential are related to the macroscopic deformation and electrical fields through the multiscale base functions. To improve the accuracy of the multiscale method, the periodic boundary conditions are developed to calculate the multiscale base functions for those piezoelectric structures composed of periodic microstructures. Moreover, the oversampling techniques are introduced to derive the oscillatory boundary conditions to construct the base functions for those piezoelectric structures with non-periodic heterogeneous microscopic features. The efficiency and accuracy of the multiscale method proposed for the piezoelectric materials are validated through the examples where the structures consist of periodic or non-periodic heterogeneous microstructures. The results indicate that the multiscale method developed can effectively obtain the macroscale response of piezoelectric materials (displacement or electrical potential) as well as the response in the microscale (stress or electrical displacement).