大连理工大学  登录  English 
覃开蓉
点赞:

教授   博士生导师   硕士生导师

主要任职: 医学部党委书记兼常务副部长

性别: 男

毕业院校: 复旦大学

学位: 博士

所在单位: 生物医学工程学院

学科: 生物医学工程

电子邮箱: krqin@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
The Role of Microfluidics for Organ on Chip Simulations.

点击次数:

论文类型: 期刊论文

发表时间: 2017-05-04

发表刊物: Bioengineering (Basel, Switzerland)

收录刊物: PubMed

卷号: 4

期号: 2

ISSN号: 2306-5354

关键字: 3D biopringting,Bioengineering,Biosensors,Microbiome,Microfluidics

摘要: A multichannel three-dimensional chip of a microfluidic cell culture which enables the simulation of organs is called an "organ on a chip" (OC). With the integration of many other technologies, OCs have been mimicking organs, substituting animal models, and diminishing the time and cost of experiments which is better than the preceding conventional in vitro models, which make them imperative tools for finding functional properties, pathological states, and developmental studies of organs. In this review, recent progress regarding microfluidic devices and their applications in cell cultures is discussed to explain the advantages and limitations of these systems. Microfluidics is not a solution but only an approach to create a controlled environment, however, other supporting technologies are needed, depending upon what is intended to be achieved. Microfluidic platforms can be integrated with additional technologies to enhance the organ on chip simulations. Besides, new directions and areas are mentioned for interested researchers in this field, and future challenges regarding the simulation of OCs are also discussed, which will make microfluidics more accurate and beneficial for biological applications.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学