• 更多栏目

    李崇君

    • 教授     博士生导师   硕士生导师
    • 主要任职:数学科学学院副院长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:数学科学学院
    • 学科:计算数学
    • 办公地点:创新园大厦B1114
    • 联系方式:0411-84708351-8115
    • 电子邮箱:chongjun@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    发表论文

    • 1.      Chong-Jun Li*, Ying Zhang, Yan-Mei Jia, Juan Chen, The polygonal scaled boundary thin plate element based on the discrete Kirchhoff theory, Computers and Mathematics with Applications, 2021, 97: 223-236. https://doi.org/10.1016/j.camwa.2021.05.036

      2.      Juan Chen, Chong-Jun Li*, A polygonal element for couple stress/strain gradient elasticity based on SBFEM and spline interpolation, Sci. Sin-Phys. Mech. Astron., 2021, 51(5), 054602 (in Chinese). doi: 10.1360/SSPMA-2020-0168

      3.      Juan Chen, Chong-Jun Li*, The polygonal spline thin plate element based on the discrete Kirchhoff theory, Sci. Sin-Phys. Mech. Astron., 2020, 50(4): 044601 (in Chinese). doi: 10.1360/SSPMA-2019-0358

      4.      Yijun Zhong, Chongjun Li*, Piecewise sparse recovery via piecewise inverse scale space algorithm with deletion rule, Journal of Computational Mathematics, 2020, 38(2): 375-394. doi:10.4208/jcm.1810-m2017-0233

      5.      Yan-Mei Jia, Chong-Jun Li*, Ying Zhang, Juan Chen, The high-order completeness analysis of the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 2020, 362: 112867. https://doi.org/10.1016/j.cma.2020.112867

      6.      Chong-Jun Li*, Yan-Mei Jia, A superconvergent nonconforming quadrilateral spline element for biharmonic equation using the B-net method, Computational and Applied Mathematics, 2020, 39:70. https://doi.org/10.1007/s40314-020-1105-0

      7.      Pengxiao Wang, Chongjun Li*, Piecewise Coons Surfaces Reconstruction over Hierarchical T-Meshes, Journal of Mathematical Research with Applications, 2019, 39(6): 677-699. DOI:10.3770/j.issn:2095-2651.2019.06.012

      8.      Ping Guo, Chong-Jun Li*, Razumikhin-type theorems on the moment stability of the exact and numerical solutions for the stochastic pantograph differential equations, Journal of Computational and Applied Mathematics, 2019, 355: 77-90. https://doi.org/10.1016/j.cam.2019.01.011

      9.      Yong-Fu Zhang, Chong-Jun Li*, A class of multistep numerical difference schemes applied in inverse heat conduction problem with a control parameter, Inverse Problems in Science and Engineering, 2019, 27:7, 887-942. https://doi.org/10.1080/17415977.2018.1501370

      10.   Juan Chen, Chong-Jun Li*, A 3D triangular prism spline element using B-net method, European Journal of Mechanics / A Solids, 2019, 75: 485-496. https://doi.org/10.1016/j.euromechsol.2019.02.014

      11.   Chong-Jun Li*, Lin-Lin Xie, Wen-Bin Du, Curve and surface fitting based on the nonhomogeneous linear differential system, Graphical Models, 2019, 103: 101026. https://doi.org/10.1016/j.gmod.2019.101026

      12.   Ping Guo, Chong-Jun Li*, Almost sure stability with general decay rate of exact and numerical solutions for stochastic pantograph differential equations, Numerical Algorithms, 2019, 80(4): 1391-1411. https://doi.org/10.1007/s11075-018-0531-1

      13.   Ping Guo, Chong-Jun Li*, Razumikhin-type technique on stability of exact and numerical solutions for the nonlinear stochastic pantograph differential equations, BIT Numerical Mathematics , 2019, 59: 77-96. https://doi.org/10.1007/s10543-018-0723-z

      14.   Chongjun Li*, Pengxiao Wang, The Instability in the dimensions of spline spaces over T-meshes with nested T-cycles, Numer. Math. Theor. Meth. Appl., 2019, 12(1): 187-211. doi: 10.4208/nmtma.OA-2017-0110

      15.   Yijun Zhong, Chongjun Li*, Piecewise Sparse Recovery via Piecewise Greedy Method, Journal of Mathematical Research with Applications, 2018, 38(6): 643-658.

      16.   Yong-Xia Hao, Chong-Jun Li*, Ren-Hong Wang, Sparse approximate solution of fitting surface to scattered points by MLASSO model, SCIENCE CHINA: Mathematics, 2018, 61(7): 1319-1336.

      17.   Yongfu Zhang, Chongjun Li*, The PDE-Constrained Optimization Method Based on MFS for Solving Inverse Heat Conduction Problems, Journal of Mathematical Research with Applications, 2018, 38(3): 303-330.

      18.   Chong-Jun Li*, Yi-Jun Zhong, A pseudo-heuristic parameter selection rule for l1-regularized minimization problems, Journal of Computational and Applied Mathematics, 2018, 333: 1-19.

      19.   Ping Guo, Chong-JunLi*, Almost sure exponential stability of numerical solutions for stochastic pantograph differential equations, J. Math. Anal. Appl., 2018, 460: 411-424.

      20.   Yong-Xia Hao, Chong-Jun Li, The C1 and C2 quasi-Plateau problems, Journal of Computational and Applied Mathematics, 2018, 329: 106-124.

      21.   Chong-jun Li*, Lin-Lin Xie, Wen-Bin Du, Hai-Dong Li, Huan Bao, Curves and surfaces fitting models based on the diagonalizable differential system, Journal of Computational and Applied Mathematics, 2018, 329: 179-190.

      22.   Jian-Ping Zhou, Ren-Hong Wang, Chong-Jun Li*, The bivariate quadratic C1 spline spaces with stable dimensions on the triangulations, Journal of Computational and Applied Mathematics, 2018, 329: 364-373.

      23.   Jian-Ping Zhou, Ren-Hong Wang, Chong-Jun Li*, Lp Stability of the Truncated Hierarchical B-Spline Basis, Journal of Mathematical Research with Applications, Nov., 2017, Vol. 37, No. 6, pp. 697-709.

      24.   Chong-jun Li*, Lin-Lin Xie, Hai-Dong Li, Reconstruction of the Linear Ordinary Differential System Based on Discrete Points, Journal of Mathematical Research with Applications, Jan., 2017, Vol. 37, No. 1, pp. 73-89.

      25.   Yong-Fu Zhang, Chong-Jun Li*, A Gaussian RBFs method with regularization for the numerical solution of inverse heat conduction problems, Inverse Problems in Science and Engineering (2016) 24(9): 1606-1646.

      26.   Qing-Yuan Hu, Yang Xia*, Ping Hu*, Chong-Jun Li, A concave-admissible quadrilateral quasi-conforming plane element using B-net method, European Journal of Mechanics A/Solids (2016) 57: 34-44.

      27.   Juan Chen, Chong-Jun Li*, The cubic spline Hermite interpolation bases for thin plate bending quadrilateral elements (in Chinese), Scientia Sinica Mathematica (2015) 45(9): 1523-1536.

      28.   Qing-Jie Guo, Ren-Hong Wang and Chong-Jun Li*, On the problem of instability in the dimensions of spline spaces over T-meshes with T-cycles, Journal of Computational Mathematics (2015) 33(3): 248-262.

      29.   Juan Chen, Chong-Jun Li*, A quadrilateral spline element for couple stress/strain gradient elasticity, Computers and Structures (2014) 138: 133-141.

      30.   Juan Chen, Chong-Jun Li*, A cubic quadrilateral spline element with concave shapes, Theoretical & Applied Mechanics Letters, Vol.3(3), pp. 21-24, 2013.

      31.   Yong-Xia Hao, Chong-Jun Li*, Ren-Hong Wang, An approximation method based on MRA for the quasi-Plateau problem, BIT Numerical Mathematics, Vol.53(2), pp. 411-442, 2013.

      32.   Juan Chen, Chong-Jun Li*, Development of quadrilateral spline thin plate elements using the B-net method, Acta Mechanica Sinica, Vol.29(4), pp. 567-574, 2013.

      33.   Jiang Qian*, Ren-Hong Wang, Chong-Jun Li, The Bases of the Non-Uniform Cubic Spline Space S-3(1,2)(Delta((2))(mn)), Numerical Mathematics-Theory Methods and Applications, Vol.5(4), pp 635-652, 2012.

      34.   Yong-Xia Hao*, Ren-Hong Wang, Chong-Jun Li*, Minimal quasi-Bezier surface, Applied Mathematical Modelling, Vol.36(12), pp. 5751-5757, 2012.

      35.   Juan Chen, Chong-Jun Li*, Two 8-node quadrilateral spline elements by B-net method, Acta Mechanica Sinica, Vol.28(6), pp. 1620-1629, 2012.

      36.   Juan Chen, Chongjun Li*, High accuracy finite difference schemes for linear fourth order boundary value problem and derivatives, Journal of Information & Computational Science, Vol.9(10), pp. 2751-2759, 2012. (EI)

      37.   Chong-Jun Li*, Juan Chen, On the dimensions of bivariate spline spaces and the stability of the dimensions, Journal of Computational and Applied Mathematics 236(5) (2011) 765-774.

      38.   Yong-Xia Hao*, Ren-Hong Wang, Chong-Jun Li, Analysis of a 6-point binary subdivision scheme, Applied Mathematics and Computation, 218(7) (2011) 3209-3216.

      39.   Chong-Jun Li*, Juan Chen, Wan-Ji Chen, A 3D hexahedral spline element, Computers and Structures 89(23-24) (2011) 2303-2308.

      40.   Juan Chen, Chong-Jun Li*, Wan-Ji Chen, A 3D pyramid spline element, Acta Mechanica Sinica, 27(6) (2011) 986-993.

      41.   Juan Chen, Chong-Jun Li*, Wan-Ji Chen, Construction of n-sided Polygonal Spline Element Using Area Coordinates and B-net Method, Acta Mechanica Sinica, 26 (2010), 685–693 (SCI,EI).

      42.   Juan Chen, Chong-Jun Li*, Wan-Ji Chen, A family of spline finite elements, Computers and Structures, 88 (2010), 718-727.

      43.   Chong-Jun Li*, Vittoria Demichelis, Catterina Dagnino, Finite-part integrals over polygons by an 8-node quadrilateral spline finite element, BIT Numer Math (2010) 50: 377-394.

      44.   Chong-Jun Li*, Catterina Dagnino, An adaptive numerical integration algorithm for polygons, Applied Numerical Mathematics 60 (2010) 165-175.

      45.   Juan Chen, Chong-Jun Li, Wan-Ji Chen, Area coordinates and B-net method for quadrilateral spline elements, Chinese Journal of Theoretical and Applied Mechanics, 42 (1) (2010) 83-92.

      46.   Juan Chen, Chong-Jun Li, Wan-Ji Chen, A new method of quadrilateral elements by area coordinates interpolation, Engineering Mechanics, 27(5) (2010) 45-52 .

      47.   Juan Chen*, Chong-Jun Li, Wan-Ji Chen, A 17-node quadrilateral spline finite element using the triangular area coordinates, Appl. Math. Mech. -Engl. Ed. 31(1) (2010) 125-134.

      48.   Chong-Jun Li*, Paola Lamberti, Catterina Dagnino, Numerical integration over polygons by an 8-node quadrilateral spline finite element, J. Comp. Appl. Math., 233 (2009) 279-292.

      49.   Ren-Hong Wang, Chong-Jun Li*, Juan Chen, The Dimensions of Spline Spaces on Quasi-Rectangular Meshes, Journal of Mathematical Research & Exposition, 28 (4) (2008) 745-752.

      50.   Chong-Jun Li*, A kind of multistep finite difference methods for arbitrary order linear boundary value problems, Applied Mathematics and Computation 196 (2008) 858-865.

      51.   Chong-Jun Li* and Ren-Hong Wang, A new 8-node quadrilateral spline finite element, Jour. Comp. Appl. Math., 195 (2006) 54-65.

      52.   Chong-Jun Li*, Ren-Hong Wang, Feng Zhang, Improve on the Dimensions of Spline Spaces on T-Mesh, Journal of Information and Computational Science 3 (2) (2006) 235-244.

      53.   Ren-Hong Wang and Chong-Jun Li*, Bivariate quartic spline spaces and quasi-interpolation operators, Jour. Comp. Appl. Math., 190 (2006) 325-338.

      54.   Chong-Jun Li and Ren-Hong Wang, Bivariate Cubic Spline Space and Bivariate Cubic NURBS Surfaces, Proceedings of Geometric Modeling and Processing 2004April 13-15 2004, Beijing China, IEEE Computer Society Press, 115-123.

      55.   Chong-Jun Li* and Ren-Hong Wang, The Multivariate Quartic NURBS Surfaces, Jour. Comp. Appl. Math., 163 (1) (2004) 155-164.

      56.   Ren-Hong Wang and Chong-Jun Li, A Kind of Multivariate NURBS Surfaces, Jour. Comp. Math., 22 (1) (2004) 137-144.

    研究领域

    • 多元样条

      计算几何

      数值逼近

      样条有限元

    专利

    • 暂无内容