Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Liu Haitao

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Main positions:Associate Professor
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:Dalian University of Technology
Discipline:Power Machinery and Engineering. Fluid Machinery and Engineering
Business Address:Ganjingzi District of Dalian City, Liaoning Province, linggong Road 2
Contact Information:htliu@dlutedu.cn
E-Mail:htliu@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Profile

Personal Information

Dr Liu received the Ph.D. degree from the School of Energy and Power Engineering, Dalian University of Technology, China, in 2016. From 2016 to 2019, he was a research fellow with Rolls-Royce@NTU Corp Lab at Nanyang Technological University, Singapore. He is currently an associate professor at Dalian University of Technology, China. His main research interests include Gaussian process, representation learning, multi-task learning, active learning and intelligent design of turbomachinery.


Projects

1. National Key Research and Development Program of China (2020YFA0714403), 2020.12-2025.11

2. National Key Research and Development Program of China (52005074), 2021.01-2023.12

3. Fundamental Research Funds for the Central Universities (DUT19RC(3)070), 2020.01-2022.12


Selected Publications

2021:

Haitao Liu*, Yew-Soon Ong, Ziwei Yu, Jianfei Cai, Xiaobo Shen, Scalable Gaussian process classification with additive noise for non-Gaussian likelihoods, IEEE Transactions on Cybernetics, 2021, 1-13

Haitao Liu, Yew-Soon Ong, Xiaomo Jiang, Xiaofang Wang*, Modulating scalable Gaussian processes for expressive statistical learning, Pattern Recognition, 2021, 1-31

Haitao Liu, Yew-Soon Ong, Xiaomo Jiang, Xiaofang Wang*, Deep latent-variable kernel learning, IEEE Transactions on Cybernetics, 2020, 1-14

Haitao Liu, Changjun Liu, Xiaomo Jiang, Xudong Chen, Shuhua Yang, Xiaofang Wang*, Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems, arXiv:2106.05848, 2021, 1-25


2020:

Haitao Liu*, Yew-Soon Ong, Xiaobo Shen, Jianfei Cai, When Gaussian process meets big data: A review of scalable GPs, IEEE Transactions on Neural Networks and Learning Systems, 2020, 1-19.

Haitao Liu*, Yew-Soon Ong, Jianfei Cai, Large-scale heteroscedastic regression via Gaussian process, IEEE Transactions on Neural Networks and Learning Systems, 2020, 1-14.

Jianchi Xin, Xiaofang Wang, Haitao Liu, Wei Wang, Lushen Zhou, Numerical investigation of aerodynamic load on the impellers of centrifugal compressor with leakage flow, International Journal of Fluid Machinery and Systems, 2020, 13(2): 409-424.

Lusheng Zhou, Xiaofang Wang*, Haitao Liu, Jianchi Xin, Numerical Investigation of Operational Conditions Effects on the Annualr Seal Rotordynamic Characteristics of a 1400-Mw Canned Motor Reactor Coolant Pump, Solid State Technology, 2020, 63(3), 4915-4926

Chao Bian, Xiaofang Wang, Changjun Liu, Xinyu Xie, Haitao Liu*, Impact of exploration-exploitation trade-off on UCB-based Bayesian Optimization, Proceedings of the Fourth Chinese International Turbomachinery Conference (CITC), 30-Oct-2-Nov, 2020, NanChangChina

Changjun Liu, Haitao Liu, Chao Bian, Xudong Chen, Shuhua Yang, Xiaofang Wang*, Investigation of Time-series Prediction for Turbine Machinery Condition Monitoring, Proceedings of the Fourth Chinese International Turbomachinery Conference (CITC), 30-Oct-2-Nov, 2020, NanChangChina

吴锴,王晓放,边超,刘海涛*,面向变精度仿真数据建模分析的多任务学习方法比较研究,中国国际透平机械会议,2020,南昌


2019:

Haitao Liu*, Jianfei Cai, Yew-Soon Ong, Yi Wang, Understanding and comparing scalable Gaussian process regression for big data, Knowledge-Based Systems, 2019, 164:324-335.

Bingshui Da*, Yew-Soon Ong, Abhishek Gupta, Liang Feng, Haitao Liu, Fast Transfer Gaussian Process Regression with Large-Scale Sources, Knowledge-Based Systems, 2019, 165: 208-218


2018:

Haitao Liu*, Jianfei Cai, Yew-Soon Ong, Remarks on multi-output Gaussian process regression, Knowledge-Based Systems, 2018, 144:102-121.

Haitao Liu*, Yew-Soon Ong, Jianfei Cai, A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design, Structural and Multidisciplinary Optimization, 2018, 57(1):393-416.

Haitao Liu*, Jaime-Rubio Hervas, Yew-Soon Ong, Jianfei Cai, Yi Wang, An adaptive RBF-HDMR modeling approach under limited computational budget, Structural and Multidisciplinary Optimization, 2018, 57(3):1233-1250.

Haitao Liu, Shengli Xu, Xiaofang Wang, Shuhua Yang, Jigang Meng, A multi-response adaptive sampling approach for global metamodeling, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(1):3-16.

Haitao Liu*, Jianfei Cai, Yi Wang. Yew-Soon Ong, Generalized robust Bayesian committee machine for large-scale Gaussian process regression, International Conference on Machine Learning (ICML), 2018.07, Stockholm, Sweden.

何曦,徐胜利,刘海涛,王晓放,陈旭东,基于谐响应分析的水环境下核主泵叶轮动应力研究,风机技术,2018,2,53-59


2017:

Haitao Liu*, Jianfei Cai, Yew-Soon Ong, An adaptive sampling approach for Kriging metamodeling by maximizing expected prediction error, Computers & Chemical Engineering, 2017, 106: 171-182.

Haitao Liu*, Yew-Soon Ong, Jianfei Cai, Yi Wang, Cope with diverse data structures in multi-fidelity modeling: A Gaussian process method, Engineering Applications of Artificial Intelligence, 2017, 67C:211-225.

Haitao Liu, Xiaofang Wang, Shengli Xu, Generalized radial basis function-based high-dimensional model representation handling existing random data, Journal of Mechanical Design, 2017, 139(1):011404.

Haitao Liu, Shengli Xu, Xudong Chen, Xiaofang Wang, Qingchao Ma, Constrained global optimization via a DIRECT-type constraint-handling technique and an adaptive metamodeling strategy, Structural and Multidisciplinary Optimization, 2017, 55(1):155-177.


2016:

Haitao Liu, Shengli Xu, Yi Ma, Xudong Chen, Xiaofang Wang, An adaptive Bayesian sequential sampling approach for global metamodeling, Journal of Mechanical Design, 2016,131(1), 011404.

Haitao Liu, Shengli Xu, Xiaofang Wang, Jigang Meng, Shuhua Yang, Optimal weighted pointwise ensemble of radial basis functions with different basis functions, AIAA Journal, 2016, 54(10):3117-3133.

Haitao Liu, Shengli Xu, Xiaofang Wang, Junnan Wu, Yang Song, A global optimization algorithm for simulation-based problems via the extended DIRECT scheme, Engineering Optimization, 2015, 47(11): 1441-1458.

Haitao Liu, Shengli Xu, Ying Ma, Xiaofang Wang, Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces, Journal of Global optimization, 2015, 63(2): 229-251.

Haitao Liu, Shengli Xu, Xiaofang Wang, Sequential sampling designs based on space reduction, Engineering Optimization, 2015, 47(7): 867-884.

Jianchi Xin, Xiaofang Wang, Haitao Liu, Numerical investigation of variable inlet guide vanes with trailing-edge dual slots to decrease the aerodynamic load on centrifugal compressor impeller, Advances in Mechanical Engineering, 2016, 8(3): 1687814016640653.  

Haitao Liu, Shengli Xu, Xiaofang Wang. Sampling strategies and metamodeling techniques for engineering design: comparison and application. 2016.06, ASME Turbo Expo 2016: Turbine Technical Conference and Exposition, Seoul, South Korea.

Ying Ma, Shengli Xu, Haitao Liu, Xiaofang Wang. Optimization of reinforcing ribs of a hollow blade using metamodel-based optimization algorithm. ASME Turbo Expo 2016: Turbine Technical Conference and Exposition, 2016.06, Seoul, South Korea.

Jinzhi Huang, Shengli Xu, Haitao Liu, Xiaofang Wang. Robust performance optimization of centrifugal compressor volute with a rectangular cross-section. ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2016.06, Montreal, Canada.


Educational Experience

  • 2011.9 -- 2016.10

    大连理工大学       流体机械及工程       Doctoral Degree

  • 2007.9 -- 2011.6

    河海大学       热能与动力工程       Bachelor's Degree

  • 2004.9 -- 2007.7

    西安交通大学苏州附属中学       \

Work Experience

  • 2019.11 -- Now

    大连理工大学      副教授

  • 2016.10 -- 2019.11

    南洋理工大学(新加坡)      博士后

Research Focus

  • 基于深度学习的流场预测和分析

  • Active learning (Design of experiments)
  • Optimal design
  • Bayesian learning