大连理工大学  登录  English 
栾雨时
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 东北师范大学

学位: 博士

所在单位: 生物工程学院

学科: 生物化工. 生物化学与分子生物学. 生物工程

办公地点: 生物工程学院401室

联系方式: 13624087256

电子邮箱: luanyush@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Global Propagation Method for Predicting Protein Function by Integrating Multiple Data Sources

点击次数:

论文类型: 期刊论文

发表时间: 2016-01-01

发表刊物: CURRENT BIOINFORMATICS

收录刊物: SCIE、Scopus

卷号: 11

期号: 2

页面范围: 186-194

ISSN号: 1574-8936

关键字: Data integration; gene ontology; global propagation algorithm; label correlation; protein function prediction; yeast

摘要: Protein function prediction is one of the most important tasks in bioinformatics. Nowadays, high-throughput experiments have generated large scale genomics and proteomics data. To accurately annotate proteins, it is necessary and wise to integrate these heterogeneous data sources. In this paper, a multi-source protein global propagation (MS-PGP) algorithm has been proposed, which integrates multiple data sources and combines protein global propagation with label correlation (PGP) algorithm to predict functions for unannotated proteins. Specifically, we use three data sources to predict protein functions: sequence data, microarray gene expression data and protein-protein interaction data. A naive Bayesian fashion method is adopted to fuse the three data sources into a combined network. Gene ontology biological process annotation is used to calculate the association scores between unannotated proteins and functions. The experimental results on Yeast show that the proposed method has a higher accuracy over other multiple network methods. It is efficient to predict the function of unannotated proteins.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学