教授 博士生导师 硕士生导师
性别: 男
毕业院校: 东北师范大学
学位: 博士
所在单位: 生物工程学院
学科: 生物化工. 生物化学与分子生物学. 生物工程
办公地点: 生物工程学院401室
联系方式: 13624087256
电子邮箱: luanyush@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2015-12-10
发表刊物: FRONTIERS IN PLANT SCIENCE
收录刊物: SCIE、PubMed、Scopus
卷号: 6
期号: DEC
页面范围: 1113
ISSN号: 1664-462X
关键字: miRNA; siRNA; horizontal gene transfer; plant-microbe interactions; controversy of cross-kingdom miRNA
摘要: Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates, and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs). sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs) and small interfering RNAs (siRNAs), are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs.