大连理工大学  登录  English 
栾雨时
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 东北师范大学

学位: 博士

所在单位: 生物工程学院

学科: 生物化工. 生物化学与分子生物学. 生物工程

办公地点: 生物工程学院401室

联系方式: 13624087256

电子邮箱: luanyush@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Plant microRNA-Target Interaction Identification Model Based on the Integration of Prediction Tools and Support Vector Machine

点击次数:

论文类型: 期刊论文

发表时间: 2014-07-22

发表刊物: PLOS ONE

收录刊物: SCIE、PubMed、Scopus

卷号: 9

期号: 7

页面范围: e103181

ISSN号: 1932-6203

摘要: Background: Confident identification of microRNA-target interactions is significant for studying the function of microRNA (miRNA). Although some computational miRNA target prediction methods have been proposed for plants, results of various methods tend to be inconsistent and usually lead to more false positive. To address these issues, we developed an integrated model for identifying plant miRNA-target interactions.
   Results: Three online miRNA target prediction toolkits and machine learning algorithms were integrated to identify and analyze Arabidopsis thaliana miRNA-target interactions. Principle component analysis (PCA) feature extraction and self-training technology were introduced to improve the performance. Results showed that the proposed model outperformed the previously existing methods. The results were validated by using degradome sequencing supported Arabidopsis thaliana miRNA-target interactions. The proposed model constructed on Arabidopsis thaliana was run over Oryza sativa and Vitis vinifera to demonstrate that our model is effective for other plant species.
   Conclusions: The integrated model of online predictors and local PCA-SVM classifier gained credible and high quality miRNA-target interactions. The supervised learning algorithm of PCA-SVM classifier was employed in plant miRNA target identification for the first time. Its performance can be substantially improved if more experimentally proved training samples are provided.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学