卢鹏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:港口、海岸及近海工程

办公地点:海岸和近海工程国家重点实验室A410办公室

联系方式:0411-84708520

电子邮箱:lupeng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Partitioning of solar radiation in Arctic sea ice during melt season

点击次数:

论文类型:期刊论文

发表时间:2018-10-01

发表刊物:OCEANOLOGIA

收录刊物:SCIE

卷号:60

期号:4

页面范围:464-477

ISSN号:0078-3234

关键字:Arctic sea ice; Melt pond; Radiation transfer; Mass balance; Numerical modelling

摘要:The partitioning of solar radiation in the Arctic sea ice during the melt season is investigated using a radiative transfer model containing three layers of melt pond, underlying sea ice, and ocean beneath ice. The wavelength distribution of the spectral solar irradiance clearly narrowed with increasing depth into ice, from 350-900 nm at the pond surface to 400-600 nm in the ocean beneath. In contrast, the net spectral irradiance is quite uniform. The absorbed solar energy is sensitive to both pond depth (H-p) and the underlying ice thickness (H-i). The solar energy absorbed by the melt pond (Psi(p)) is proportional only to H-p. However, the solar energy absorbed by the underlying ice (Psi(i)) is more complicated due to the counteracting effects arising from the pond and ice to the energy absorption. In September, Psi(p) decreased by 10% from its August value, which is attributed to more components in the shortwave band (<530 nm) of the incident solar radiation in September relative to August. The absorption coefficient of the sea ice only enhances the absorbed energy in ice, while an increase in the ice scattering coefficient only enhances the absorbed energy in the melt pond, although the resulted changes in Psi(p) and Psi(i) are smaller than that in the albedo and transmittance. The energy absorption rate with depth depends strongly on the incident irradiance and ice scattering, but only weakly on pond depth. Our results are comparable to previous field measurements and numerical simulations. We conclude that the incident solar energy was largely absorbed by the melt pond rather than by the underlying sea ice. (C) 2018 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by Elsevier Sp. z o.o.